molsim tutorial

for the 1.x.x series

J.S. Hansen

January 2024

1 Introduction

molsim is a GNU Octave/Matlab toolbox for molecular dynamics simula-
tions. molsim supports simulations of

e simple Lennard-Jones systems,

e molecular systems with bond, angle, and torsion potentials,
e confined flow systems, eg., Couette and Poiseuille flows,

e charged systems using shifted force and Wolf methods,

e dissipative particle dynamics systems,

e different ensembles,

e GPU/CUDA support,

e and more ...

molsim is a wrapper for the seplib library, which is a light-weight flexible
molecular dynamics simulation library mainly written in ISO-C99. With
version series 1.x.x. seplib offers both shared memory parallelization for
CPUs and GPU simulations using Nvidia’s CUDA toolkit; this is supported
by molsim. seplib is also developed and maintained by this author, and the
underlying algorithms are based on the books by Allen and Tildesley [1],
Frenkel and Smit [2], Rapaport [3], and Sadus [4].

In this text

>>
symbolizes the GNU Octave/Matlab command prompt. This

$

symbolizes the shell prompt.

Example scripts and functions to simulate different systems can be found
under the package examples directory. It is highly recommended that the
user’s project starts from one of these .m-files, and the user then makes the
necessary changes.

2 Installation

2.1 GNU Octave

GNU Octave’s package manager offers a very easy installation. From the
command prompt type (one single line)

>> pkg install "https://github.com/jesperschmidthansen/molsim/archive/ \
refs/tags/v<version>.tar.gz"

to install the package. <version> can be for example 0.9.2. Check contact
to molsim by

>> molsim(’hello’)
Hello.

You can also download the tar.gz file manually from
https://github.com/jesperschmidthansen/molsim

and save it in some directory of your choice. From this directory enter GNU
Octave and type

>> pkg install molsim-<version>.tar.gz

2.2 Matlab

From

https://github.com/jesperschmidthansen/seplib/

download and save the current release seplib-<version>.tar.gz in a di-
rectory of your choice. Unpack, configure and build the library

$ tar zxvf seplib-<version>.tar.gz
$ cd seplib

$./configure

$ make

$ cd octave

To build the mex-file enter Matlab

$ matlab -nodesktop

and run the script buildmex, that is,
>> buildmex

Depending on the system this will build a molsim.mex<archtype> file;
<archtype> being your computer architecture. Copy this file to a direc-
tory in your Matlab search path.

Note: Matlab compatibility is not guarantied. molsim will only be tested
against very limited Matlab versions.

2.3 GPU/CUDA support

You must install this manually and currently the build is very primitive.
Download the tar.gz file from

https://github.com/jesperschmidthansen/molsim
and save it in some directory of your choice. Unpack the file and build

$ tar zxvf molsim-<version>.tar.gz
$ cd molsim/cuda
$ make cmolsim.oct

This should build the file cmolsim.oct. In the unlikely event this works,
please test the build using the command

$ octave -q tgpu_1l.m

before popping the champaign. (This should give six columns with readable
numbers.) Add the directory to your octave path. If things does not work
try to hack the Makefile.

Note: Tests have only been done for compute compatibility 7.5

3 The interface strategy

This tutorial is not meant to introduce molecular dynamics; such introduc-
tions can be found in the books listed in the reference list. In brief, the basic
idea is to solve the classical equation of motion of an ensemble of interacting
particles. In the simplest form this means solving (numerically) Newton’s

second law A q

%ZVi, dI;Z:fia (1)
where r;, v;,p; and f; are the particle position, velocity, momentum and
force acting on the particle, respectively. In a standard simulation we solve
this set of differential equations by (i) evaluating the forces acting on the
particles, and (ii) from this integrate forward in time. The following pseudo

code lists the basic idea

Listing 0

Set simulation parameters
Set initial configuration r,p

do (as many times as we want)
f <« calcforce(r)
r,p < integrate (f,p)

done

The molsim interface seeks to emulate this, and give the user coding flexi-
bility and accessibility to the simulation quantities. In general, the molsim
interface is of the form

molsim(<action>, <specifier>, <arguments>);

The action can be any particular action the user wishes to perform, for
example, calcforce, integrate, and so on. The action is specified by the
second argument; say, 1j specifies that action calcforce should apply the
Lennard-Jones interaction. The specifier arguments are given in the final
input and can be a scalar, string, vector, or a sequence of these.

4 First quick example: The Lennard-Jones liquid

Listing 1 shows a script simulating a standard Lennard-Jones (LJ) system
in the micro-canonical ensemble, where number of particles, volume, and
total mechanical energy is conserved.

Listing 1

% Specify the LJ parameters
cutoff = 2.5; epsilon = 1.0; sigma = 1.0; aw=1.0;

% Set init. position and velocities 10x10x10 particles

% in box with lengths 12x12x12. Velocities set to default.
% Configuration stored in start.xyz.

molsim(’set’, ’lattice’, [10 10 10], [12 12 12]);

% Load the configuration file
molsim(’load’, ’xyz’, ’start.xyz’);

% Main mol. simulation loop - 10 thousand time steps
for n=1:10000

% Reset forces etc
molsim(’reset’);

% Calculate force between particles of type A (default type)
molsim(’calcforce’, ’1j’, ’AA’, cutoff, sigma, epsilon, aw);

% Integrate forward in time - use leapfrog alogrithm
molsim(’integrate’, ’leapfrog’);

end

% Free memory allocated
molsim(’clear’);

I hope the code is, mostly, clear. Notice, that in action calcforce the first
argument to the specifier *1j’, namely, >AA’ tells the program that this
force acts between particles of type A. This type is the default type; a very
important point I highlight

The default particle type is A

In Listing 1 no information is printed or saved, and, admitted, not very
useful. Inside the main loop the user can call the print action, for example,

if rem(n,100)==0
molsim(’print’);
end

to print current iteration number, potential energy per particle, kinetic en-
ergy per particle, total energy per particle, kinetic temperature, and total
momentum to screen every 100 time steps.

Information can also be stored into variables for further analysis. For
example, to get the system energies and pressure

energies = molsim(’get’, ’energies’); # vector with ekin and epot
press = molsim(’get’, ’pressure’);

and particle positions and velocities

x = molsim(’get’, ’positions’);

molsim(’get’, ’velocities’);

A%

In the reference sheet (see Appendix) you can find the list of specifiers for
the get action.

Important note For molecular systems the pressure is calculated using
the molecular pressure tensor. In general this is different from the atomic
pressure. The user must enable this calculation using the set action with
specifier molstresscalc. For example, to calculate the (molecular) pressure
every ten time steps use

molsim(’set’, ’molstresscalc’, 10);
before the main loop. Then in the main loop retrieve the pressure by

if rem(n,10)==0
[press_atomic, press_mol]l=molsim(’get’, ’pressure’);
end

4.1 NVT and NPT simulations

Often you will not perform simulations in the micro-canonical ensemble, but
under a desired temperature and/or pressure. To perform simulations under
specific temperatures you can choose one of three different methods:

Relaxation: Using this method call the action ’thermostat’ with spec-
ifier >relax’ after the integration step, for example, to thermostat
particles of type A such that their kinetic temperature is 2.2 use

molsim(’thermostat’, ’relax’, ’A’, 2.2, 0.01);

The last argument is the relaxation parameter; the higher value the
faster relaxation. Notice that too large values make the system unre-
alistically stiff; the best value is optimized via trail-and-error.

Nosé-Hoover: There is also a Nosé-Hoover thermostat available. This is
called by

molsim(’thermostat’, ’nosehoover’,’A’ ,2.2, 0.1);

The last argument is here the inverse thermostat mass. Again, you
should choose this parameter with care. Impotantly, this thermostat
is called before the leap-frog integrator call.

GJF-Langevin integrator: This method replaces the leap-frog integrator,
by

molsim(’integrate’, ’langevin’, 2.2, 0.5);

The last argument is the thermostat coupling parameter, a. Typically
0.01 < o < 1.0 See Ref. [6].

To simulate at pressure, say 0.9, you call the action ’barostat’ after
the integration step,

molsim(’barostat’, ’relax’, 0.9, 0.01, ’iso’);

The choice of relaxation parameter, here 0.01, is again a matter of the specific
system. The last argument tells the barostat to do an isotropic compression.
If this is left out the barostat works by changing the system box length in the
z-direction only (anisotropic scaling); this is practical when doing sampling
as two directions are fixed. You can use the barostat and the thermostat
in the same simulation mimicking an NPT system. For the expert: The
barostat is based on the atomic pressure, a molecular pressure barostat is
planned for future releases.

5 The molsim force field

molsim supports simulations of more complicated systems. In general, the
molsim force field is defined from the potential function

U(I‘Z', Tigy - -) = Ulattice + UvWaals + Ucoulomb + Ubonds + Uangles + Utorsion (2)

The first term allows for simulations of fictitious fixed crystal arrangements,
where the particles/atoms are tethered around a pre-set lattice site. This
is particularly useful for systems with walls. The potential function is a
harmonic spring type

1
Ulattice = Z 5]{30(1'1' - 1‘0)2 3 (3)

sites

where ko is the spring constant, r; is the position of particle/atom ¢, and ry
is the virtual lattice site. Using this requires that the virtual crystal sites
are set: use molsim(’set’,’virtualsites’); to set the current positions
as crystal sites. The force from this potential is calculated by

molsim(’calcforce’, ’lattice’, <part. type>, <k0>);

where <part. type> is the particle type and <k0> is the force constant.
The short-range van der Waals pair interaction is given via the 12-6
Lennard-Jones potential

12 6
g g
UvWaals: Z 4e <> — Ay <> . (4)
i,j pairs Tij

Here r;; is the particle distance, € and o define the characteristic energy and
length scales. The parameter a, determines the weight of the attractive
second term in the potential function. The force call is

molsim(’calcforce’, ’1j’, <pair>, <cutoff>, <sigma>, <eps>, <aw>);

where <cutoff> is the maximum interaction length (or cut-off). This must
be less than or equal to the maximum system interaction length which is by
default 2.5. The system maximum interaction length can be set via the set
action

molsim(’set’, ’cutoff’, <value>);

The Coulomb potential is
4:q;
Ucoulomb = Z H . (5)
4,7 pairs T'ij

Currently this long-range interaction is evaluated using approximate shifted-
force or Wolf methods; this can be specified. Note: these two algorithms do
not apply to confined systems. The call is

molsim(’calcforce’, ’coulomb’, <method>, <cutoff>, <optWolf>);

<method> can take value *sf’ or ’wolf’, and <optWolf> is the Wolf screen-
ing parameter which must be specified if the Wolf method is chosen. Again,
the cut-off must be less than or equal to the maximum system interaction
length.

Bonds are modelled via the harmonic spring potential

1
Ubonds = 3 5’%(%’ —1o)*. (6)
bonds

ks is the spring constant and Iy is the zero force bond length. Currently
molsim does not support rigid bonds. To calculate the force from bonds use

molsim(’calcforce’, ’bond’, <type>, <ks>);

<type> specifies the specific bond type. Bond, angle, and torsion angle types
are specified through integers, see example script later.
The angle potential is the cosine squared potential

1
Uangles = 5 Z kG(COS(G) - COS(QO))27 (7)
angles

where ky is the force amplitude, and 6 the zero-force angle. See Fig. 1 for
the angle definition. The call is

molsim(’calcforce’, ’angle’, <type>, <a0>, <ka>);

where <type> specifies the angle type, <a0> the zero force angle, 6y, and
<ka> the force constant, kg.

4
C 4c

\cb\ 2 N3

c—¢ C—CZI
' \ \)
N
\ 0 \Cl\ SC/ \c1

Figure 1: Illustration of the angle and torsion angle.

Finally, the torsion angle potential is the Ryckaert-Belleman potential

5
Utorsion = Z Z Cn Cosn(ﬂ' - ¢) . (8)

angles n=0

9

Here ¢, are the six Ryckaert-Belleman coefficients, and ¢ is the torsion angle,
see Fig. 1. Two illustrative examples are when only ¢; # O:

1. If ¢4 > 0 then the minimum energy torsion angle is ¢ = 0; this is
illustrated in the right-hand figure of a planar molecule with the torsion
angle defined by the 1-2-3-5 bonds.

2. If ¢; < 0 then the minimum energy torsion angle is ¢ = m; this is the
torsion angle defined by the 1-2-3-4 bonds.

To calculate the force from this interaction potential use
molsim(’calcforce’, ’torsion’, <type>, <RB-coef>);

<RB-coef> is an array of length six specifying the Ryckert-Belleman coeffi-
cients. Note, the torsion angle is often referred to as the dihedral angle.

6 Molecular systems: Toluene

This example shows how to setup a simulation of liquid toluene. The model
of the molecule is a so-called united atomic unit (UAU) model. This means
that each carbon group is represented by a single Lennard-Jones particle,
thus, the toluene molecule is composed of seven identical Lennard-Jones
particles, six forming the phenyl ring structure (particle indices 2-7) and
one representing the methyl group (index 1). We exclude the molecular
dipole moment, i.e., we do not apply any charges to the system. The model
molecule is shown in Fig. 2.

To define the molecule geometry (or topology) we need different intra-
molecular interactions, i.e., bond, angle, and torsion angle potentials. Lennard-
Jones interactions between carbon groups in the same molecule are excluded.
The model is further simplified by using only two different bond types (with
different zero force bond length, but the same force constant), and one an-
gle type. There are two different torsion angles, eg., 1-2-3-4 form one type
of torsion angle, ¢ = m, whereas 7-2-3-4 form a torsion angle with ¢ = 0.
We define the molecular model in two files; one with extension .xyz giving
the carbon groups’ positions for one molecule and one with extension .top
defining bonds and angles in the molecule. You can find examples of these
two files for different molecules under the resources directory.

To setup the entire system (i.e. the ensemble of molecules) we copy the
single molecule .xyz and .top to the current directory and use the set
action; for example to simulate 500 molecules

10

5

Figure 2: United atomic unit representation of toluene.

>> molsim(’set’, ’molconfig’, ’toluene.xyz’, ’toluene.top’,
500, 0.05, 42)

The two last arguments are the molecular number density (keep very low
initially and compress the system afterwards), and a seed for the random
number generator. This generates a system start.xyz file and start.top
file that can be loaded by your program.

We now only need the parameter values for the interaction potentials
and we will simply use what is available in the literature [5] and convert
them into MD reduced units. Listing 2 shows the resulting script

Listing 2

% Simulation parameters
% (Corresponds to 298.15 K, 862 kg/m"3)
tempO = 4.969; densO = 1.96; dt = 0.001; nloops = 200000;

% Intra-molecular parameters
bondlength O = 0.4; bondlength_1 = 0.38; springconstant = 48910;
bondangle = 2.09; angleconstant = 1173;

(0.0, 133.0, 0.0, 0.0, 0.0];
(0.0, -133.0, 0.0, 0.0, 0.0];

torsionparam_O
torsionparam_1

% Load positions, set temp, remove intra-molecular pair-interaction etc

11

molsim(’load’, ’xyz’, ’start.xyz’);
molsim(’load’, ’top’, ’start.top’);

molsim(’set’,’timestep’, dt);
molsim(’set’, ’temperature’, tempO);
molsim(’set’, ’exclusion’, ’molecule’);

% Main loop
for n=1:nloops
molsim(’reset’)

molsim(’calcforce’, ’1j’, ’CC’, 2.5, 1.0, 1.0, 1.0);

molsim(’calcforce’, ’bond’, O, bondlength_ 0O, springconstant);
molsim(’calcforce’, ’bond’, 1, bondlength_ 1, springconstant);

molsim(’calcforce’, ’angle’, O, bondangle, angleconstant);

molsim(’calcforce’, ’torsion’, O, torsionparam_O);
molsim(’calcforce’, ’torsion’, 1, torsionparam_1);

molsim(’thermostat’, ’nosehoover’, ’C’, tempO, 0.1);
molsim(’integrate’, ’leapfrog’);

molsim(’compress’, densO);

end

Notice that

e molsim(’set’, ’exclusion’, ’molecule’); ensures that van der
Waals and the Coulomb interactions are excluded if the particles are
in same molecule. Exclusion can also be set for only bonded particles
using the 'bond’ argument.

e For the bond, angle, and torsion specifiers the first argument per-
tains to the bond/angle/torsion type.

12

7 Sampling

The user can access the system configuration through the get action and
from this perform data analysis via GNU Octave’s or Matlab’s built-in tools.
molsim also offers some run-time data sampling. The different samplers are
initialized before the main loop using the sample-action

molsim(’sample’, <sample specifier>, <arguments>);

For example, to sample the stress autocorrelation function with 200 sample
points and over a sample time span window of 5.0 we write

molsim(’sample’, ’sacf’, 200, 5.0);

The actual sampling is carried out by the specifier do; inside the main loop
there must be one call

molsim(’sample’, ’do’);

Typically this call is done just after the integration. Check the reference
sheet for the list of available samplers.

8 Parallelization on the CPU

molsim offers two types of shared memory parallelization, namely,
e Loop parallelization
e Task-block parallelization

We here only document the first type!; the task-block type will be included
in later versions of the tutorial. To use loop parallelization simply call the
set action with specifier omp

molsim(’set’, ’omp’, <nthreads>);

where nthreads is the number of threads you wish to use. Typically, do
not use more threads than the number of cpu-cores?. The call is placed
anywhere before the main loop. Be aware that depending on your hardware

and the particular system the parallelization efficiency quickly drops as a

Yep - I'm lazy
Znot even with hyper-threading

13

function of the number of threads. To explore this we define the speed-up
and efficiency by

tsi tsi
single ond efficiency = single (9)

speedup = _—
parallel tparallel N threads

where tgnge is the single thread execution time and fparanel the parallel
execution time. The speed-up is plotted in Fig. 3 for a simple Lennard-Jones
liquid simulation. The efficiency is also plotted in Fig. 3. The efficiency

Efficiency

O—O N part. 1000 |
E—& N part. 8000 |

. o
9
U L L R L L B

\ \ 03 \ \
5 10 0 5 10

) N threads N threads

Figure 3: Left: Speed-up as function of number of threads. Right: Efficiency
as function of number of threads. The test machine is a 72-core machine.

quickly drops, even on this multi-core machine, and adding more threads
(using more cpu cores) is not always optimal. In the tests-directory you
can find molsim_runparallel.m that times the execution time for a given
system size, density and number of threads; use the help command for its
usage.

9 CUDA support

Version series 1.x.x focus on including CUDA support; see section 2 for
installation. The implementation is done as a stand-alone module/function
which is independent of the CPU-based part of the toolbox. To high-light
this the function is named cmolsim; note the post-fix c. The interface
is, as for as possible, the same as for the CPU version. For example, to
calculate the pair Lennard-Jones force acting between two particles one uses
the function call

14

cmolsim(’calcforce’, ’1j’, ’AA’, 2.5, 1.0, 1.0, 1.0);
and to integrate forward in time using the leap-frog algorithm
cmolsim(’integrate’, ’leapfrog’);

The reference sheet lists the functionality supported by cmolsim. Be aware,
there may be small differences in output and arguments. You can find
example programs in the cuda directory.

Using the CUDA support module you can often experience a speed up of a
factor 5-20! This will depend on the specific problem and how much the user
writes out informations; the latter requires time consuming data transferal

between GPU and CPU.

15

References

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (1989).
[2] D. Frenkel and B. Smit, Understanding Molecular Simulation, (1996).
[3] D. C. Rapaport, The Art of Molecular Dynamics Simulation, (1995).

[4] R. J. Sadus, Molecular Simulation of Fluids. Theory, Algorithms and
Object-Orientation, (1999).

[5] J.S. Hansen Where is the hydrodynamic limit? Mol. Sim., 47:1391
(2021).

[6] A simple and effective Verlet-type algorithm for simulating Langevin dy-
namics Mol. Phys., 111:983 (2013).

16

Reference sheet

<
2
Action Specifier Arguments Output o
load Xyz file name X
top file name X
save 1: type names X
2: file name
set timestep time step (0.005) X
temperature temperature (1.0) X
cutoff Max. cut-off (2.5) X
omp No. of threads
exclusion "bonded’ or 'molecule’ X bonded only
temperaturerelax relaxation time (0.01)
compressionfactor compress factor (0.9999)
types particle types (vector string)
mass particle mass (vector)
skin buffer-skin neighblist X
charges atom charges (vector)
lattice 1: array [Ng, Ny, N.]
2: array [Lg, Ly, L]
molconfig 1: xyz file
2: top file
3: No. molecules
4: Crystal density
5: Random seed
virtualsites
molstresscalc iterations between calculation

17

CUDA

Action Specifier Arguments Output
get numbpart scalar X

box 3-vector
energies 2-vector (kin, pot) X
pressure scalar(s) (p, pmol)
velocities Npart. X 3-matrix X
positions Npart. X 3-matrix X
forces Npart. X 3-matrix
types Npart.-string X
mass Npart.-vector X
charges Npart.-vector X
molpositions Npol X 3-matrix
molvelocities Nl X 3-matrix
indices 1: mol. index Nyau-vector
bondlengths Nibonds-vector
angles Nhangles-vector
torsions Nhitorsion-vector

18

Action

Specifier

Arguments

Output

CUDA

calcforce

1]

coulomb

bonded

angle

torsion
lattice

dpd

Ll S rul > vl el ol s SR vl ol S S el AT ol Al >l e

part. types
cutoff

o

€

Qo

method
cutoff

opt. Wolf param.

type

bond length
spring constant
type

zero angle force
force constant
type

tors. param
part. type
spring constant
part. types
cutoff

rep. parameter
o

>

19

CUDA

Action Specifier Arguments Output
integrate leapfrog X
dpd A
langevin 1:target temperature
2:a (0.01-1.0)
thermostat relax 1: type
2: target temperature
3: relax time
nosehoover 1: type (optional) X
2: target temperature
3: thermostat mass (10-50)
barostat relax 1: target pressure
2: relax time
3: ’iso’ (optional)
compress 1: target density/length
2: opt for length compression, the direction
add force 1: force vector (length of numb part)
2: direction (1,2,3)
tolattice 1: dx (scalar)
2: direction (0,1,2)
clear

20

Action Specifier Arguments Output
sample vacf or mvact 1: sample vector length
2: sample time span
sacf or msacf 1: sample vector length
2: sample time span
msd 1: sample vector length
2: sample time span
3: no. wavevectors
4: particle type
radial 1: sample vector length
2: step between samples
3: particle types
hydrocorrelations or 1: sample vector length
mhydrocorrelations 2: sample time span
3: no. wavevectors
Wavevector direction is y-direction
Transverse direction is z-direction
profiles or 1: particle type
mprofiles 2: sample vector length
3: sample interval
do
reset
integration (optional)
momentum 1: Particle type
print
convert 1: o 2x structs
2: ¢/kp
3:m

21

Action

Specifier

Arguments

Output

task

1]

bonded

angle

torsion

coulomb

do

W R O DO TU W

part. types
cutoff

o

€

Ay

block id

type

bond length
spring constant
block id

type

zero angle force
force constant
block id

type

tors. param
block id

cutoff

block id

no. blocks

22

