LIBINT  2.6.0
Public Types | Public Member Functions | Static Public Attributes | List of all members
libint2::SphericalMultipole_Descr Struct Reference

Represents quantum numbers of real spherical multipole operator defined in Eqs. More...

#include <oper.h>

Inheritance diagram for libint2::SphericalMultipole_Descr:
Inheritance graph
[legend]
Collaboration diagram for libint2::SphericalMultipole_Descr:
Collaboration graph
[legend]

Public Types

typedef MultiplicativeODep1Body_Props Properties
 
enum  Sign
 
- Public Types inherited from libint2::SphericalMultipoleQuanta
enum  Sign { plus, minus }
 
- Public Types inherited from libint2::Hashable< LIBINT2_UINT_LEAST64, ReferToKey >
typedef KeyTraits< LIBINT2_UINT_LEAST64 >::ReturnType KeyReturnType
 

Public Member Functions

 SphericalMultipole_Descr ()
 Default ctor makes a 0th-order multipole.
 
 SphericalMultipole_Descr (int l, int m)
 constructs $ \mathcal{N}^{+}_{l,m} $ if $ m \geq 0 $, otherwise constructs $ \mathcal{N}^{-}_{l,m} $
 
 SphericalMultipole_Descr (int l, int m, Sign sign)
 
 SphericalMultipole_Descr (const SphericalMultipoleQuanta &quanta)
 
std::string description () const
 
std::string label () const
 
int psymm (int i, int j) const
 
int hermitian (int i) const
 
- Public Member Functions inherited from libint2::Contractable< SphericalMultipole_Descr >
 Contractable (const Contractable &source)
 
Contractableoperator= (const Contractable &source)
 
bool contracted () const
 
void uncontract ()
 
void contract ()
 
- Public Member Functions inherited from libint2::SphericalMultipoleQuanta
 SphericalMultipoleQuanta ()
 constructs an object in default (unusable) state
 
 SphericalMultipoleQuanta (int l, int m)
 constructs $ \mathcal{N}^{+}_{l,m} $ if $ m \geq 0 $, otherwise constructs $ \mathcal{N}^{-}_{l,m} $
 
 SphericalMultipoleQuanta (int l, int m, Sign sign)
 constructs $ \mathcal{N}^{\pm}_{l,m} $
 
int l () const
 
int m () const
 
Sign sign () const
 
bool valid () const
 
int phase () const
 
bool is_precomputed () const
 $ \mathcal{N}^{+}_{0,0} = 1 $
 
int value () const
 
LIBINT2_UINT_LEAST64 key () const
 Implements Hashable<unsigned>::key()
 

Static Public Attributes

static const unsigned max_key
 
- Static Public Attributes inherited from libint2::SphericalMultipoleQuanta
const static constexpr unsigned max_qn = LIBINT_CARTGAUSS_MAX_AM
 
static const unsigned max_key = (1 + max_qn) * (1 + max_qn)
 

Additional Inherited Members

- Static Public Member Functions inherited from libint2::Contractable< SphericalMultipole_Descr >
static void set_contracted_default_value (bool dv)
 
- Protected Attributes inherited from libint2::Hashable< LIBINT2_UINT_LEAST64, ReferToKey >
KeyStore< LIBINT2_UINT_LEAST64, OwnKey< KeyMP >::result > key_
 

Detailed Description

Represents quantum numbers of real spherical multipole operator defined in Eqs.

5 and 6 of J.M. Pérez-Jordá and W. Yang, J Chem Phys 104, 8003 (1996). ( $ m \geq 0 $ corresponds to moments $ \mathcal{N}^+ $ , $ m < 0 $ corresponds to $ \mathcal{N}^- $ )


The documentation for this struct was generated from the following file: