Parallel Betweenness

Example of parallel implementation of betweenness centrality using the multiprocessing module from Python Standard Library.

The function betweenness centrality accepts a bunch of nodes and computes the contribution of those nodes to the betweenness centrality of the whole network. Here we divide the network in chunks of nodes and we compute their contribution to the betweenness centrality of the whole network.

Note: The example output below shows that the non-parallel implementation is faster. This is a limitation of our CI/CD pipeline running on a single core.

Depending on your setup, you will likely observe a speedup.

plot parallel betweenness

Out:

Computing betweenness centrality for:
Graph with 1000 nodes and 2991 edges
        Parallel version
                Time: 2.3704 seconds
                Betweenness centrality for node 0: 0.10850
        Non-Parallel version
                Time: 9.6783 seconds
                Betweenness centrality for node 0: 0.10850

Computing betweenness centrality for:
Graph with 1000 nodes and 4879 edges
        Parallel version
                Time: 2.6854 seconds
                Betweenness centrality for node 0: 0.00187
        Non-Parallel version
                Time: 13.3114 seconds
                Betweenness centrality for node 0: 0.00187

Computing betweenness centrality for:
Graph with 1000 nodes and 2000 edges
        Parallel version
                Time: 2.1729 seconds
                Betweenness centrality for node 0: 0.00363
        Non-Parallel version
                Time: 8.7191 seconds
                Betweenness centrality for node 0: 0.00363

from multiprocessing import Pool
import time
import itertools

import matplotlib.pyplot as plt
import networkx as nx


def chunks(l, n):
    """Divide a list of nodes `l` in `n` chunks"""
    l_c = iter(l)
    while 1:
        x = tuple(itertools.islice(l_c, n))
        if not x:
            return
        yield x


def betweenness_centrality_parallel(G, processes=None):
    """Parallel betweenness centrality  function"""
    p = Pool(processes=processes)
    node_divisor = len(p._pool) * 4
    node_chunks = list(chunks(G.nodes(), int(G.order() / node_divisor)))
    num_chunks = len(node_chunks)
    bt_sc = p.starmap(
        nx.betweenness_centrality_subset,
        zip(
            [G] * num_chunks,
            node_chunks,
            [list(G)] * num_chunks,
            [True] * num_chunks,
            [None] * num_chunks,
        ),
    )

    # Reduce the partial solutions
    bt_c = bt_sc[0]
    for bt in bt_sc[1:]:
        for n in bt:
            bt_c[n] += bt[n]
    return bt_c


G_ba = nx.barabasi_albert_graph(1000, 3)
G_er = nx.gnp_random_graph(1000, 0.01)
G_ws = nx.connected_watts_strogatz_graph(1000, 4, 0.1)
for G in [G_ba, G_er, G_ws]:
    print("")
    print("Computing betweenness centrality for:")
    print(nx.info(G))
    print("\tParallel version")
    start = time.time()
    bt = betweenness_centrality_parallel(G)
    print(f"\t\tTime: {(time.time() - start):.4F} seconds")
    print(f"\t\tBetweenness centrality for node 0: {bt[0]:.5f}")
    print("\tNon-Parallel version")
    start = time.time()
    bt = nx.betweenness_centrality(G)
    print(f"\t\tTime: {(time.time() - start):.4F} seconds")
    print(f"\t\tBetweenness centrality for node 0: {bt[0]:.5f}")
print("")

nx.draw(G_ba, node_size=100)
plt.show()

Total running time of the script: ( 0 minutes 52.942 seconds)

Gallery generated by Sphinx-Gallery