Boculo

__ .0rg

The Leading Open Source
Backup Solution

Bacula Developer’s Guide

Kern Sibbald

January 24, 2022
This manual documents Bacula version 9.6.7 (10 December 2020)

Copyright (©) 2000-2018, Kern Sibbald
Bacula is a registered trademark of Kern Sibbald.

This Bacula documentation by Kern Sibbald with contributions from many
others,
a complete list can be found in the License chapter. Creative Commons

Attribution-ShareAlike 4.0 International License
http://creativecommons.org/licenses/by-sa/4.0/

©Nole

Bacula® is a registered trademark of Kern Sibbald

Contents

{1 Bacula Developer Notes|

IBacula Developer Notes| e

[1.0.3 Copyrights| o e

11.0.4 Copyright Assignment — Fiduciary License Agreement|

[1.1 The Development Cycle| e

1.2 Bacula Code Submissions and Projects|. L.

|Code Submissions and Projects|

1.4 Developing Bacula]

[1.4.1 Debugging|.

11.4.2 Using a Debugger| e

[1.4.3 Memory Leaks|

[1.4.4 Special Files|

11.4.5 When Implementing Incomplete Code| oL

[1.4.8 Programming Standards|o

149 Do Not Usel o o o

/ DDING| o e e 11

CONTENTS

[1.4.15 Message Classes| 12
[1.4.16 Debug Messages| e e 12
[1.4.17 FError Messages| oL 13
[1.4.18 Job Messages| e 13
[1.4.19 Queued Job Messages| L 14
11.4.20 Memory Messages| e 14
[1.4.21 Bugs Database| 14

|2 Bacula Git Usage| 15
[Bacula Bit Usage|« e 15
2.1 Bacula Git repositories|. L e 15
.. 15

D3 GREUSART - « « o o v oo e e 15
CREUSAET -« o o oo e e e e e e, 15
2.2.1 Learning Git| L 16

2.3 Step by Step Modifying Bacula Code|. 17
231 MoreDetalld 19

2.4 Forcing Changes| e e 20
3 acula ugin 23
3.1 Normal vs Command vs Options Plugins|. 23
B.2 Loading Plugins| e 24
3.3 loadPlugin|. L Lo 25
8.4 Plugin Entry Points| 27
[3.4.1 newPlugin(bpContext *ctx)| 27
[3.4.2 freePlugin(bpContext *ctx)| L 28
[3.4.3 getPluginValue(bpContext *ctx, pVariable var, void *value)| 28
[3.4.4 setPluginValue(bpContext *ctx, pVariable var, void *value)| 28
[3.4.5 handlePluginEvent(bpContext *ctx, bEvent *event, void *value)| 28
[3.4.6 startBackupFile(bpContext *ctx, struct save_pkt *sp)| 30
[3.4.7 endBackupFile(bpContext *ctx)| 31
[3.4.8 startRestoreFile(bpContext *ctx, const char *cmd)| 31
13.4.9 createFile(bpContext *ctx, struct restore pkt *rp)| 31
[3.4.10 setFileAttributes(bpContext *ctx, struct restore_pkt *rp)| 33

CONTENTS iii
[3.4.11 endRestoreFile(bpContext *ctx)| Lo 33

[3.4.12 pluginlO(bpContext *ctx, struct io_pkt *io) 33

[3.4.13 bool checkFile(bpContext *ctx, char *fname)| 34

8.5 Bacula Plugin Entrypoints|.o 34
13.5.1 bRC registerBaculaEvents(bpContext *ctx, ...)| 35

[3.5.2 bRC getBaculaValue(bpContext *ctx, bVariable var, void *value). 35

[3.5.3 bRC setBaculaValue(bpContext *ctx, bVariable var, void *value) 35

13.5.4 bRC JobMessage(bpContext *ctx, const char *file, int line, int type, utime_t mtime, |

| const char *Imt,)| . - - . - . . e 35
13.5.5 bRC DebugMessage(bpContext *ctx, const char *file, int line, int level, const char |

| FIG,). o o - o e 35
13.5.6 void baculaMalloc(bpContext *ctx, const char *file, int line, size_t size)| 35

[3.5.7 void baculaFree(bpContext *ctx, const char *file, int line, void *mem)| 35

8.6 Building Bacula Pluging| o 36

4 Platform Support| 37
[Platform Support|. e 37
EI Generallo 37
(Generall L 37

4.2 Requirements to become a Supported Plattorm| 00, 37
[Platform Requirements|. oL 37
6_Daemon Protocoll 39
BI Generall 39
(Generall L e 39

5.2 Low Level Network Protocoll. 39
[Low Level Network Protocoll. 39

5.3 General Daemon Protocollo 39
[General Daemon Protocoll 39

.4 'The Protocol Used Between the Director and the Storage Daemon| 40
|Protocol Used Between the Director and the Storage Daemon| 40

5.0 The Protocol Used Between the Director and the File Daemonl 40
[Protocol Used Between the Director and the File Daemonl 40

5.6 The Save Protocol Between the File Daemon and the Storage Daemon| 41
[Save Protocol Between the File Daemon and the Storage Daemon|. 41

CONTENTS

0.6.1 Command and Control Informationl 41
(.62 DatalInformationl. L 41

6 Director Services Daemon| 43
Director Services Daemon| oo 43
[7_File Services Daemonl| 45
[File Services Daemomnl« o o oo 45
[7.1 Commands Received from the Director for a Backup| 45
|Commands Received from the Director for a Backup| 45

[.2 Commands Received from the Director for a Restorel 46
[Commands Received from the Director for a Restore 46
Storage Daemon Design| 47
Storage Daemon Design| oo oo 47
8.1 5D Design Introduction| Lo 47
ISD Design Introduction] 47
8.2 5D Development Outline|. 47
ISD Development Outline] e 47
B.3_SD Connections and Sessionsl Lo 47
D Connections and Sessions| L 47
8.3.1 SD Append Requests|. 48

ISD Append Requests|. e 48
8.3.2 SD Read Requests| 49

ISD Read Requests| o 49

84 SD Data Structuresl oL 49
[SD Data Structures 49
[9 Catalog Services| 51
OI Generall 51
Generall e 51
9.1.1 Filenames and Maximum Filename Lengthl 51
9.1.2 Installing and Configuring MySQL|o 51
9.1.3 Installing and Configuring PostgreSQL|. 52

9.1.4 Internal Bacula Catalog| 52

CONTENTS v .

9.1.5 Database Table Design|. 52

9.2 Sequence of Creation of Records tor a Save Job| 52
|[Sequence of Creation of Records for a Save Job| 52

0.3 Database Tabled 53
[Database Tabled 53
9.3.1 MySQL Table Definition|. o 62

[10 Storage Media Output Format| 65
Storage Media Output Format| o 65
MOT Generallot 65
Generall 65
MO2ZDefnifond. . . .« o o oot 65
Defnifions. o o oo 65

110.3 Storage Daemon File Output Format|. 0. 66
[Storage Daemon File Output Format|. 66
10.4 Overall Formatl o 67
Overall Format] oo e 67
[10.5 Serializationl L e 67
Derializationl 67
0.6 Block Header] 67
BlockHeaderlt 67
[10.7 Record Headerl o o e 68
Record Headerl oot i it 68
[0.8 Version BB02 Block Headerl 69
WVersion BB02 Block Headerl oo o oo 69
10.9 Version 2 Record Header|. oo oo 69
[Version 2 Record Headerl 69
10.10Volume Label Formatl 69
Volume Tabel Formall o o 69
[L0.115ession Labell 000 70
Session Labell o o L oo e 70
110.120verall Storage Format| oo 70

[Overall Storage Format| e 70

CONTENTS

10.13Unix File Attributes 74
[Unix File Attributesd o . o 74
110.1401d Depreciated Tape Format|. o 75
|Old Depreciated Tape Format|. 75

{11 Bacula Porting Notes| 79
[Bacula Porting Notes| e 79
[11.1 Porting Requirements| 79
|Porting Requirements| L 79
[11.2 Steps to Take for Portingl o 80
Steps to Take for Porting] L 80
Implementing a Bacula GUI Intertace] oo 83
MIT Generallo 83
Generall e 83
I11.1.1 Minimal Code in Console Program| 83
I1.1.2 GUlInterfaceis Difficultl 83
M2 BVISAPT . o oo 84
89
12.1 Introduction to TLSl 89
[MLS Tntroductionl o o 89
[12.2 New Configuration Directives| 89
INew Configuration Directives| e 89
[12.3 TLS API Implementation| 90
[TLS API Implementation| e 90
[12.3.1 Library Initialization and Cleanup| L L. 90
|Library Initialization and Cleanup| L 90
112.3.2 Manipulating TLS Contexts|. 90
IManipulating TLS Contexts| o e 90
112.3.3 Performing Post-Connection Verification|. 91
|Pertorming Post-Connection Verification| 91
[12.3.4 Manipulating TLS Connections| o 91
IManipulating TLS Connections| 91

[12.4 Bnet API Changes| e 92

CONTENTS vii

IBnet API Changes|« . o e 92
[12.4.1 Negotiating a TLS Connection| 92
[Negotiating a TLS Connection| 92
[12.4.2 Manipulating Socket Blocking State| L. 92
IManipulating Socket Blocking State| oo oo oL 92

[12.5 Authentication Negotiation| L 93

[Authentication Negotiation| L L 93

[13 Bacula Regression Testing| 95

[Bacula Regression Testing] e 95

I13.1 Setting up Regession Testingl 95

Setting up Regression lesting 95

|IRunning the Regression Script| e 95
113.1.1 Setting the Configuration Parameters| 96
[Setting the Configuration Parameters| 96
[13.1.2 Building the Test Bacula] 97
|Building the Test Baculal. 97
113.1.3 Setting up your SQL engine| 97
Petting up your SQL engine|o 97
[13.1.4 Running the Disk Only Regression| 98
|[Running the Disk Only Regression| 98
[13.1.5 Other Tests] e 99
Other Testsl e 99
U316 IfaTest Failsl. o o o o o 100
MaTest Faild oo 100

113.2 Testing a Binary Installation| 100

[13.3 Running a Single Test| oo 100

[|Running a Single Test|o 100

113.4 Writing a Regression Test| 101

|Writing a Regression Test| 0 o 101
[13.4.1 Running the Tests by Hand| o 101
|IRunning the Tests by Hand| 101

113.4.2 Directory Structure] 101

. viii

CONTENTS

IDirectory Structure]. e e e 101
113.4.3 Adding a New Test|. e 101
|Adding a New Test| o o o 101
[13.4.4 Running a Test Under The Debugger| 101
|Running a Test Under The Debugger|. 101

(14 Bacula MD5 Algorithm| 103
L e 103
[14.1 Command Line Message Digest Utility | 103
|Command Line Message Digest Utility| 103
MITT Namd 103

. NOPSIS| .« v v v e e e e e e e e e e e e e 103
[14.1.3 Description] 103

4.1.4 Options| e 104
MIIE Fiedo 104

4.1.6 Bugs|. 104

[[4:2" Download md5.zip[(Zipped archive)| 104
[Download md5b.zip (Zipped archive)l L 104
MA2T See Alsalo 104
0422 BFxit Statusl 105

y DYING| .« « o o v e e e e e e e 105
114.2.4 Acknowledgements| 105

[L5 Bacula Memory Management| 107
[Bacula Memory Management| L 107
Mo Generall oo 107
Generall L e 107
[15.1.1 Statically Allocated Memory| 107
115.1.2 Dynamically Allocated Memory|. 0. 107
[15.1.3 Pooled and Non-pooled Memory| 108

(16 TCP/IP Network Protocol| 111
[TCP/IP Network Protocoll. 111
M6 Generall oot 111
Generall 111

http://www.fourmilab.ch/md5/md5.zip

CONTENTS ix .

[16.2 bnet and Threadsl. 111
bnet and Threads|. 111

16.3 bnet_open| L 111
... 111
M4 bnetsend 112
Bboetsend 112
D65 bnetdsendlo 112
boetfsendl 112
16.6 Additional Firror informationl oo o 112
[Additional Error informationl L 112
D67 bnelrecyl oo 112
brnefrecy] 112
.. 112
b Bl e 112

6.9 buet strerrorl L 113
bnetstrerrorl 113
M6I0bnetclose 113
bnefclosel 113
116.11Becoming a Server| e e e e e e e e 113
|Becoming a Server| oL e e 113
[16.12Higher Level Conventions| L 113
[Higher Level Conventions| e e 113

[17 Smart Memory Allocation| 115
[Smart Memory Allocation With Orphaned Buffer Detection| 115
117.0.1 Installing SMARTALLOC| 115
Mostalling SMARTALLOCT] - -« « o o o oo o 115
[17.0.2 Squelching a SMARTALLOC|. o o .. 116
ISquelching a SMARTALLOC| e e 116
[17.0.3 Living with Libraries| 116
[Living with Libraries| o o 116

17.04 SMARTALLOC Details

SMARTALLOC Details

CONTENTS

When SMARTALLOC is Disabled

[[7.0.6 The allocO Function] 118
alloc() Functionl. L 118
117.0.7 Overlays and Underhandedness|, 119
[Overlays and Underhandedness| 119
[17.0.8 Test and Demonstration Program|0 L. 119
[LTest and Demonstration Program|. L o 119
709 Tnvitation fo the Hackl 119
[nvitation to the Hackl oo o 119

[[7.1 Thttp://www.fourmilab.ch/smartall /smartall.zip[Download smartall.zip| (Zipped archive)| . . . 120

| Download smartall.zip (Zipped archive)| o L 120
[17.1.1 COopyINg|« o vt e e e e e e e e e e 120
pYIng] . . . e 120

[18 Bacula Copyright, Trademark, and Licenses| 121
[RITCTBY=SA] . . o o ot o e e e e e e 121
MB2GPI . . . o oot 121
MBI LGP . . o oottt e e e 121
184 Public Domainl 121
18.5 Trademarkl e 122
[18.6 Fiduciary License Agreement| 122
BT Disclalmero 122

http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip

Chapter 1

Bacula Developer Notes

This document is intended mostly for developers and describes how you can contribute to the Bacula project
and the the general framework of making Bacula source changes.

1.0.1 Contributions

Contributions to the Bacula project come in many forms: ideas, participation in helping people on the
bacula-users email list, packaging Bacula binaries for the community, helping improve the documentation,
and submitting code.

Contributions in the form of submissions for inclusion in the project are broken into two groups. The first
are contributions that are aids and not essential to Bacula. In general, these will be scripts or will go into
the bacula/examples directory. For these kinds of non-essential contributions there is no obligation to do
a copyright assignment as described below. However, a copyright assignment would still be appreciated.

The second class of contributions are those which will be integrated with Bacula and become an essential
part (code, scripts, documentation, ...) Within this class of contributions, there are two hurdles to surmount.
One is getting your patch accepted, and two is dealing with copyright issues. The following text describes
some of the requirements for such code.

1.0.2 Patches

Subject to the copyright assignment described below, your patches should be sent in git format-patch
format relative to the current contents of the master branch of the Source Forge Git repository. Please
attach the output file or files generated by the git format-patch to the email rather than include them
directory to avoid wrapping of the lines in the patch. Please be sure to use the Bacula indenting standard
(see below) for source code. If you have checked out the source with Git, you can get a diff using.

git pull
git format-patch -M

If you plan on doing significant development work over a period of time, after having your first patch reviewed
and approved, you will be eligible for having developer Git write access so that you can commit your changes
directly to the Git repository. To do so, you will need a userid on Source Forge.

1.0.3 Copyrights

To avoid future problems concerning changing licensing or copyrights, all code contributions more than a
hand full of lines must be in the Public Domain or have the copyright transferred to the Free Software

2 Bacula Version 9.6.7

Foundation Europe e.V. with a Fiduciary License Agreement (FLA) as the case for all the current code.

Prior to November 2004, all the code was copyrighted by Kern Sibbald and John Walker. After November
2004, the code was copyrighted by Kern Sibbald, then on the 15th of November 2006, Kern transferred the
copyright to the Free Software Foundation Europe e.V. In signing the FLA and transferring the copyright,
you retain the right to use the code you have submitted as you want, and you ensure that Bacula will always
remain Free and Open Source.

Your name should be clearly indicated as the author of the code, and you must be extremely careful not to
violate any copyrights or patents or use other people’s code without acknowledging it. The purpose of this
requirement is to avoid future copyright, patent, or intellectual property problems. Please read the LICENSE
agreement in the main Bacula source code directory. When you sign the Fiduciary License Agreement (FLA)
and send it in, you are agreeing to the terms of that LICENSE file.

If you don’t understand what we mean by future problems, please examine the difficulties Mozilla was having
finding previous contributors at | http://www.mozilla.org/MPL /missing.html . The other important issue is
to avoid copyright, patent, or intellectual property violations as was (May 2003) claimed by SCO against
IBM.

Although the copyright will be held by the Free Software Foundation Europe e.V., each developer is expected
to indicate that he wrote and/or modified a particular module (or file) and any other sources. The copyright
assignment may seem a bit unusual, but in reality, it is not. Most large projects require this.

If you have any doubts about this, please don’t hesitate to ask. The objective is to assure the long term
survival of the Bacula project.

Ttems not needing a copyright assignment are: most small changes, enhancements, or bug fixes of 5-10 lines
of code, which amount to less than 20

1.0.4 Copyright Assignment — Fiduciary License Agreement

Since this is not a commercial enterprise, and we prefer to believe in everyone’s good faith, previously
developers could assign the copyright by explicitly acknowledging that they do so in their first submission.
This was sufficient if the developer is independent, or an employee of a not-for-profit organization or a
university. However, in an effort to ensure that the Bacula code is really clean, beginning in August 2006,
all previous and future developers with SVN write access will be asked to submit a copyright assignment (or
Fiduciary License Agreement — FLA), which means you agree to the LICENSE in the main source directory.
It also means that you receive back the right to use the code that you have submitted.

Any developer who wants to contribute and is employed by a company should either list the employer as
the owner of the code, or get explicit permission from him to sign the copyright assignment. This is because
in many countries, all work that an employee does whether on company time or in the employee’s free time
is considered to be Intellectual Property of the company. Obtaining official approval or an FLA from the
company will avoid misunderstandings between the employee, the company, and the Bacula project. A good
number of companies have already followed this procedure.

The Fiduciary License Agreement is posted on the Bacula web site at: http://www.bacula.org/en/FLA-
bacula.en.pdf

The instructions for filling out this agreement are also at: |http://www.bacula.org/?page=fsfe
It should be filled out, then sent to:

Kern Sibbald

Cotes-de-Montmoiret 9

1012 Lausanne
Switzerland

Please note that the above address is different from the officially registered office mentioned in the document.

http://www.mozilla.org/MPL/missing.html
http://www.bacula.org/en/FLA-bacula.en.pdf
http://www.bacula.org/en/FLA-bacula.en.pdf
http://www.bacula.org/?page=fsfe

Bacula Version 9.6.7 3

When you send in such a complete document, please notify me: kern at sibbald dot com, and please add
your email address to the FLA so that I can contact you to confirm reception of the signed FLA.

1.1 The Development Cycle

As discussed on the email lists, the number of contributions are increasing significantly. We expect this
positive trend will continue. As a consequence, we have modified how we do development, and instead of
making a list of all the features that we will implement in the next version, each developer signs up for one
(maybe two) projects at a time, and when they are complete, and the code is stable, we will release a new
version. The release cycle will probably be roughly six months.

The difference is that with a shorter release cycle and fewer released feature, we will have more time to
review the new code that is being contributed, and will be able to devote more time to a smaller number of
projects (some prior versions had too many new features for us to handle correctly).

Future release schedules will be much the same, and the number of new features will also be much the same
providing that the contributions continue to come — and they show no signs of let up :-)

Feature Requests:
In addition, we have ”formalizee” the feature requests a bit.

Instead of me maintaining an informal list of everything I run into (kernstodo), we now maintain a ”formal”
list of projects. This means that all new feature requests, including those recently discussed on the email
lists, must be formally submitted and approved.

Formal submission of feature requests will take two forms:

1. non-mandatory, but highly recommended is to discuss proposed new features on the mailing list.

2. Formal submission of an Feature Request in a special format. We’ll give an example of this below, but
you can also find it on the web site under ”Support -> Feature Requests”. Since it takes a bit of time to
properly fill out a Feature Request form, you probably should check on the email list first.

Once the Feature Request is received by the keeper of the projects list, it will be sent to the Bacula project
manager (Kern), and he will either accept it (90the time), send it to the email list asking for opinions, or
reject it (very few cases).

If it is accepted, it will go in the ”projects” file (a simple ASCII file) maintained in the main Bacula source
directory.

Implementation of Feature Requests:
Any qualified developer can sign up for a project. The project must have an entry in the projects file, and
the developer’s name will appear in the Status field.

How Feature Requests are accepted:

Acceptance of Feature Requests depends on several things:

1. feedback from users. If it is negative, the Feature Request will probably not be accepted.

2. the difficulty of the project. A project that is so difficult that we cannot imagine finding someone to
implement probably won’t be accepted. Obviously if you know how to implement it, don’t hesitate to put it
in your Feature Request

3. whether or not the Feature Request fits within the current strategy of Bacula (for example an Feature
Request that requests changing the tape to tar format probably would not be accepted, ...).

How Feature Requests are prioritized:
Once an Feature Request is accepted, it needs to be implemented. If you can find a developer for it, or one
signs up for implementing it, then the Feature Request becomes top priority (at least for that developer).

Between releases of Bacula, we will generally solicit Feature Request input for the next version, and by way
of this email, we suggest that you send discuss and send in your Feature Requests for the next release. Please
verify that the Feature Request is not in the current list (attached to this email).

Once users have had several weeks to submit Feature Requests, the keeper of the projects list will organize

Bacula Version 9.6.7

them, and request users to vote on them. This will allow fixing prioritizing the Feature Requests. Having a
priority is one thing, but getting it implement is another thing — we are hoping that the Bacula community
will take more responsibility for assuring the implementation of accepted Feature Requests.

Feature Request format:

Origin:
Status:

What:

==== Empty Feature Request form ===========

One line summary ...

Date submitted

Name and email of originator.
More detailed explanation ...
Why it is important

Additional notes or features (omit if not used)

Origin:

Date:

Status:

What:

Why:

Notes:

End Feature Request form

==== Example Completed Feature Request form ===========

Implement a Migration job type that will move the job
data from one device to another.

Sponsored by Riege Sofware International GmbH. Contact:
Daniel Holtkamp <holtkamp at riege dot com>

28 October 2005

Partially coded in 1.37 -- much more to do. Assigned to
Kern.

The ability to copy, move, or archive data that is on a
device to another device is very important.

An ISP might want to backup to disk, but after 30 days
migrate the data to tape backup and delete it from
disk. Bacula should be able to handle this
automatically. It needs to know what was put where,
and when, and what to migrate -- it is a bit like
retention periods. Doing so would allow space to be
freed up for current backups while maintaining older
data on tape drives.

Migration could be triggered by:
Number of Jobs

Number of Volumes

Age of Jobs

Highwater size (keep total size)
Lowwater mark

1.2 Bacula Code Submissions and Projects

Getting code implemented in Bacula works roughly as follows:

e Kern is the project manager, but prefers not to be a ”gate keeper”. This means that the developers are
expected to be self-motivated, and once they have experience submit directly to the Git repositories.
However, it is a good idea to have your patches reviewed prior to submitting, and it is a bad idea
to submit monster patches because no one will be able to properly review them. See below for more
details on this.

Bacula Version 9.6.7 5

There are growing numbers of contributions (very good).

Some contributions come in the form of relatively small patches, which Kern reviews, integrates,
documents, tests, and maintains.

All Bacula developers take full responsibility for writing the code, posting as patches so that we can
review it as time permits, integrating it at an appropriate time, responding to our requests for tweaking
it (name changes, ...), document it in the code, document it in the manual (even though their mother
tongue is not English), test it, develop and commit regression scripts, and answer in a timely fashion
all bug reports — even occasionally accepting additional bugs :-)

This is a sustainable way of going forward with Bacula, and the direction that the project will be taking
more and more. For example, in the past, we have had some very dedicated programmers who did
major projects. However, some of these programmers due to outside obligations (job responsibilities
change of job, school duties, ...) could not continue to maintain the code. In those cases, the code
suffers from lack of maintenance, sometimes we patch it, sometimes not. In the end, if the code is not
maintained, the code gets dropped from the project (there are two such contributions that are heading
in that direction). When ever possible, we would like to avoid this, and ensure a continuation of the
code and a sharing of the development, debugging, documentation, and maintenance responsibilities.

1.3 Patches for Released Versions

If you fix a bug in a released version, you should, unless it is an absolutely trivial bug, create and release a
patch file for the bug. The procedure is as follows:

Fix the bug in the released branch and in the develpment master branch.

Make a patch file for the branch and add the branch patch to the patches directory in both the branch and
the trunk. The name should be 2.2.4-xxx.patch where xxx is unique, in this case it can be "restore”, e.g.
2.2.4-restore.patch. Add to the top of the file a brief description and instructions for applying it — see for
example 2.2.4-poll-mount.patch. The best way to create the patch file is as follows:

(edit) 2.2.4-restore.patch
(input description)
(end edit)

git format-patch -M
mv 0001-xxx 2.2.4-restore.patch

check to make sure no extra junk got put into the patch file (i.e. it should have the patch for that bug only).

If there is not a bug report on the problem, create one, then add the patch to the bug report.

Then upload it to the 2.2.x release of bacula-patches.

So, end the end, the patch file is:

Attached to the bug report
In Branch-2.2/bacula/patches/ ...
In the trunk

Loaded on Source Forge bacula-patches 2.2.x release. When you add it, click on the check box to send
an Email so that all the users that are monitoring SF patches get notified.

6 Bacula Version 9.6.7

1.4 Developing Bacula

Typically the simplest way to develop Bacula is to open one xterm window pointing to the source directory
you wish to update; a second xterm window at the top source directory level, and a third xterm window at
the bacula directory <top>/src/bacula. After making source changes in one of the directories, in the top
source directory xterm, build the source, and start the daemons by entering:

make and
./startit then in the enter:
./console or

./gnome-console to start the Console program. Enter any commands for testing. For example: run kernsver-
ify full.

Note, the instructions here to use ./startit are different from using a production system where the admin-
istrator starts Bacula by entering ./bacula start. This difference allows a development version of Bacula
to be run on a computer at the same time that a production system is running. The ./startit strip starts
Bacula using a different set of configuration files, and thus permits avoiding conflicts with any production
system.

To make additional source changes, exit from the Console program, and in the top source directory, stop the
daemons by entering:

./stopit then repeat the process.

1.4.1 Debugging

Probably the first thing to do is to turn on debug output.

A good place to start is with a debug level of 20 as in ./startit -d20. The startit command starts all the
daemons with the same debug level. Alternatively, you can start the appropriate daemon with the debug
level you want. If you really need more info, a debug level of 60 is not bad, and for just about everything a
level of 200.

1.4.2 Using a Debugger

If you have a serious problem such as a segmentation fault, it can usually be found quickly using a good
multiple thread debugger such as gdb. For example, suppose you get a segmentation violation in bacula-dir.
You might use the following to find the problem:

<start the Storage and File daemons> cd dird gdb ./bacula-dir run -f -s -c¢ ./dird.conf <it dies with a
segmentation fault> where The -f option is specified on the run command to inhibit dird from going into
the background. You may also want to add the -s option to the run command to disable signals which can
potentially interfere with the debugging.

As an alternative to using the debugger, each Bacula daemon has a built in back trace feature when a
serious error is encountered. It calls the debugger on itself, produces a back trace, and emails the report to
the developer. For more details on this, please see the chapter in the main Bacula manual entitled “What
To Do When Bacula Crashes (Kaboom)”.

1.4.3 Memory Leaks

Because Bacula runs routinely and unattended on client and server machines, it may run for a long time. As
a consequence, from the very beginning, Bacula uses SmartAlloc to ensure that there are no memory leaks.

Bacula Version 9.6.7 7

To make detection of memory leaks effective, all Bacula code that dynamically allocates memory MUST
have a way to release it. In general when the memory is no longer needed, it should be immediately released,
but in some cases, the memory will be held during the entire time that Bacula is executing. In that case,
there MUST be a routine that can be called at termination time that releases the memory. In this way,
we will be able to detect memory leaks. Be sure to immediately correct any and all memory leaks that are
printed at the termination of the daemons.

1.4.4 Special Files

Kern uses files named 1, 2, ... 9 with any extension as scratch files. Thus any files with these names are
subject to being rudely deleted at any time.

1.4.5 When Implementing Incomplete Code

Please identify all incomplete code with a comment that contains
*xxFITXME***

where there are three asterisks (*) before and after the word FIXME (in capitals) and no intervening spaces.
This is important as it allows new programmers to easily recognize where things are partially implemented.

1.4.6 Bacula Source File Structure

The distribution generally comes as a tar file of the form bacula.x.y.z.tar.gz where x, y, and z are the
version, release, and update numbers respectively.

Once you detar this file, you will have a directory structure as follows:

Tar file:
|- depkgs
|- mtx (autochanger control program + tape drive info)
|- sqlite (SQLite database program)
Tar file:
|- depkgs-win32
|- pthreads (Native win32 pthreads library -- dll1)
|- zlib (Native win32 zlib library)
|- wx (wxWidgets source code)

Project bacula:

|- bacula (main source directory containing configuration
| and installation files)
|- autoconf (automatic configuration files, not normally used
| by users)
|- intl (programs used to translate)
|- platforms (0S specific installation files)
|- redhat (Red Hat installation)
|- solaris (Sun installation)
|- freebsd (FreeBSD installation)
|- irix (Irix installation -- not tested)
|- unknown (Default if system not identified)
|- po (translations of source strings)
|- src (source directory; contains global header files)
|- cats (SQL catalog database interface directory)
|- console (bacula user agent directory)
|- dird (Director daemon)
|- filed (Unix File daemon)
|- win32 (Win32 files to make bacula-fd be a service)
|- findlib (Unix file find library for File daemon)

|- gnome-console (GNOME version of console program)

8 Bacula Version 9.6.7

|- 1ib (General Bacula library)
|- stored (Storage daemon)
|- tconsole (Tcl/tk console program -- not yet working)
|- testprogs (test programs -- normally only in Kern’s tree)
|- tools (Various tool programs)
|- win32 (Native Win32 File daemon)
|- baculafd (Visual Studio project file)
|- compat (compatibility interface library)
|- filed (links to src/filed)
|- findlib (links to src/findlib)
|- 1ib (links to src/lib)
|- console (beginning of native console program)
|- wx-console (wxWidget console Win32 specific parts)
|- wx-console (wxWidgets console main source program)

Project regress:

|- regress (Regression scripts)
|- bin (temporary directory to hold Bacula installed binaries)
|- build (temporary directory to hold Bacula source)
|- scripts (scripts and .conf files)
|- tests (test scripts)
|- tmp (temporary directory for temp files)
|- working (temporary working directory for Bacula daemons)

Project docs:

|- docs (documentation directory)
|- developers (Developer’s guide)
|- home-page (Bacula’s home page source)
|- manual (html document directory)
|- manual-fr (French translation)
|- manual-de (German translation)
|- techlogs (Technical development notes);

Project rescue:

|- rescue (Bacula rescue CDROM)
|- linux (Linux rescue CDROM)
|- cdrom (Linux rescue CDROM code)
|- solaris (Solaris rescue -- incomplete)
|- freebsd (FreeBSD rescue -- incomplete)

Project gui:

|- gui (Bacula GUI projects)
|- bacula-web (Bacula web php management code)
|- bimagemgr (Web application for burning CDROMs)

1.4.7 Header Files

Please carefully follow the scheme defined below as it permits in general only two header file includes per C
file, and thus vastly simplifies programming. With a large complex project like Bacula, it isn’t always easy
to ensure that the right headers are invoked in the right order (there are a few kludges to make this happen
—i.e. in a few include files because of the chicken and egg problem, certain references to typedefs had to be
replaced with void).

Every file should include bacula.h. It pulls in just about everything, with very few exceptions. If you have
system dependent ifdefing, please do it in baconfig.h. The version number and date are kept in version.h.

Each of the subdirectories (console, cats, dird, filed, findlib, lib, stored, ...) contains a single directory
dependent include file generally the name of the directory, which should be included just after the include
of bacula.h. This file (for example, for the dird directory, it is dird.h) contains either definitions of things
generally needed in this directory, or it includes the appropriate header files. It always includes protos.h.
See below.

Each subdirectory contains a header file named protos.h, which contains the prototypes for subroutines
exported by files in that directory. protos.h is always included by the main directory dependent include
file.

Bacula Version 9.6.7 9
1.4.8 Programming Standards

For the most part, all code should be written in C unless there is a burning reason to use C++, and then
only the simplest C++ constructs will be used. Note, Bacula is slowly evolving to use more and more C++.

Code should have some documentation — not a lot, but enough so that I can understand it. Look at the
current code, and you will see that I document more than most, but am definitely not a fanatic.

We prefer simple linear code where possible. Gotos are strongly discouraged except for handling an error to
either bail out or to retry some code, and such use of gotos can vastly simplify the program.

Remember this is a C program that is migrating to a tiny subset of C++4, so be conservative in your use of
C++ features.

1.4.9 Do Not Use

e STL — it is totally incomprehensible.

1.4.10 Avoid if Possible

e Using void * because this generally means that one must using casting, and in C++ casting is rather
ugly. It is OK to use void * to pass structure address where the structure is not known to the routines
accepting the packet (typically callback routines). However, declaring ”void *buf” is a bad idea. Please
use the correct types whenever possible.

e Using undefined storage specifications such as (short, int, long, long long, size_t ...). The problem with
all these is that the number of bytes they allocate depends on the compiler and the system. Instead
use Bacula’s types (int8_t, uint8_t, int32_t, uint32_t, int64_t, and uint64_t). This guarantees that the
variables are given exactly the size you want. Please try at all possible to avoid using size_t ssize_t and
the such. They are very system dependent. However, some system routines may need them, so their
use is often unavoidable.

e Returning a malloc’ed buffer from a subroutine — someone will forget to release it.

e Heap allocation (malloc) unless needed — it is expensive. Use POOL_MEM instead.

e Templates — they can create portability problems.

e Fancy or tricky C or C++ code, unless you give a good explanation of why you used it.

e Too much inheritance — it can complicate the code, and make reading it difficult (unless you are in
love with colons)

1.4.11 Do Use Whenever Possible

e Locking and unlocking within a single subroutine.

A single point of exit from all subroutines. A goto is perfectly OK to use to get out early, but only to
a label named bail_out, and possibly an ok_out. See current code examples.

malloc and free within a single subroutine.

Comments and global explanations on what your code or algorithm does.

e When committing a fix for a bug, make the comment of the following form:

Reason for bug fix or other message. Fixes bug #1234

10 Bacula Version 9.6.7

It is important to write the bug #1234 like that because our program that automatically pulls
messages from the git repository to make the Changelog looks for that pattern. Obviously the 1234
should be replaced with the number of the bug you actually fixed.

Providing the commit comment line has one of the following keywords (or phrases), it will be ignored:

tweak

typo

cleanup

bweb:

regress:

again

.gitignore

fix compilation
technotes

update version
update technotes
update kernstodo
update projects
update releasenotes
update version
update home
update release
update todo
update notes
update changelog

e Use the following keywords at the beginning of a git commit message

1.4.12 Indenting Standards

We find it very hard to read code indented 8 columns at a time. Even 4 at a time uses a lot of space, so we
have adopted indenting 3 spaces at every level. Note, indention is the visual appearance of the source on
the page, while tabbing is replacing a series of up to 8 spaces from a tab character.

The closest set of parameters for the Linux indent program that will produce reasonably indented code are:

-nbad -bap -bbo -nbc -br -brs -c36 -cd36 -ncdb -ce -ci3 -cli0
-cp36 -d0 -dil -ndj -nfcl -nfca -hnl -i3 -ip0O -185 -1p -npcs
-nprs -npsl -saf -sai -saw -nsob -nss -nbc -ncs -nbfda

You can put the above in your .indent.pro file, and then just invoke indent on your file. However, be warned.
This does not produce perfect indenting, and it will mess up C++ class statements pretty badly.

Braces are required in all if statements (missing in some very old code). To avoid generating too many lines,
the first brace appears on the first line (e.g. of an if), and the closing brace is on a line by itself. E.g.

if (abc) {
some_code;

}

Just follow the convention in the code. For example we I prefer non-indented cases.

switch (code) {

case ’A’:
do something
break;

case ’B’:
again();

Bacula Version 9.6.7 11

break;
default:
break;

}

Avoid using // style comments except for temporary code or turning off debug code. Standard C comments
are preferred (this also keeps the code closer to C).

Attempt to keep all lines less than 85 characters long so that the whole line of code is readable at one time.
This is not a rigid requirement.

Always put a brief description at the top of any new file created describing what it does and including your
name and the date it was first written. Please don’t forget any Copyrights and acknowledgments if it isn’t
100% your code. Also, include the Bacula copyright notice that is in src/c.

In general you should have two includes at the top of the an include for the particular directory the code is
in, for includes are needed, but this should be rare.

In general (except for self-contained packages), prototypes should all be put in protos.h in each directory.

Always put space around assignment and comparison operators.

a=1;

if (b >=2) {
cleanup();

}

but your can compress things in a for statement:

for (i=0; i < del.num_ids; i++) {

Don’t overuse the inline if (?:). A full if is preferred, except in a print statement, e.g.:

if (ua->verbose \&& del.num_del != 0) {
bsendmsg(ua, _("Pruned %d %s on Volume %s from catalog.\n"), del.num_del,
del.num_del == 1 ? "Job" : "Jobs", mr->VolumeName) ;

Leave a certain amount of debug code (Dmsg) in code you submit, so that future problems can be identified.
This is particularly true for complicated code likely to break. However, try to keep the debug code to a
minimum to avoid bloating the program and above all to keep the code readable.

Please keep the same style in all new code you develop. If you include code previously written, you have the
option of leaving it with the old indenting or re-indenting it. If the old code is indented with 8 spaces, then
please re-indent it to Bacula standards.

If you are using vim, simply set your tabstop to 8 and your shiftwidth to 3.

1.4.13 Tabbing

Tabbing (inserting the tab character in place of spaces) is as normal on all Unix systems — a tab is converted
space up to the next column multiple of 8. My editor converts strings of spaces to tabs automatically — this
results in significant compression of the files. Thus, you can remove tabs by replacing them with spaces if
you wish. Please don’t confuse tabbing (use of tab characters) with indenting (visual alignment of the code).

12 Bacula Version 9.6.7

1.4.14 Don’ts
Please don’t use:

strepy O
strcat()
strocpy ()
strncat();
sprintf ()
snprintf ()

They are system dependent and un-safe. These should be replaced by the Bacula safe equivalents:

char *bstrncpy(char *dest, char *source, int dest_size);

char *bstrncat(char *dest, char *source, int dest_size);

int bsnprintf(char xbuf, int32_t buf_len, const char *fmt, ...);

int bvsnprintf(char *str, int32_t size, const char *format, va_list ap);

See src/lib/bsys.c for more details on these routines.

Don’t use the %lld or the %q printf format editing types to edit 64 bit integers — they are not portable.
Instead, use %s with edit_uint64(). For example:

char buf[100];

uint64_t num = something;

char ed1[50];

bsnprintf (buf, sizeof (buf), "Num=Ys\n", edit_uint64(num, edl));

Note: %lld is now permitted in Bacula code — we have our own printf routines which handle it correctly. The
edit_uint64() subroutine can still be used if you wish, but over time, most of that old style will be removed.

The edit buffer ed1 must be at least 27 bytes long to avoid overflow. See src/lib/edit.c for more details. If
you look at the code, don’t start screaming that I use 1ld. I actually use subtle trick taught to me by John
Walker. The 11d that appears in the editing routine is actually #define to a what is needed on your OS
(usually “lld” or “q”) and is defined in autoconf/configure.in for each OS. C string concatenation causes the
appropriate string to be concatenated to the “%”.

Also please don’t use the STL or Templates or any complicated C++ code.

1.4.15 Message Classes

Currently, there are five classes of messages: Debug, Error, Job, Memory, and Queued.

1.4.16 Debug Messages

Debug messages are designed to be turned on at a specified debug level and are always sent to STDOUT.
There are designed to only be used in the development debug process. They are coded as:

DmsgN(level, message, argl, ...) where the N is a number indicating how many arguments are to be
substituted into the message (i.e. it is a count of the number arguments you have in your message —
generally the number of percent signs (%)). level is the debug level at which you wish the message to be
printed. message is the debug message to be printed, and argl, ... are the arguments to be substituted.
Since not all compilers support #defines with varargs, you must explicitly specify how many arguments you
have.

When the debug message is printed, it will automatically be prefixed by the name of the daemon which is
running, the filename where the Dmsg is, and the line number within the file.

Bacula Version 9.6.7 13

Some actual examples are:
Dmsg2(20, “MD5len=%d MD5=%s\n", strlen(buf), buf);

Dmsgl(9, “Created client %s record\n”, client-;jhdr.name);

1.4.17 Error Messages

Error messages are messages that are related to the daemon as a whole rather than a particular job. For
example, an out of memory condition my generate an error message. They should be very rarely needed. In
general, you should be using Job and Job Queued messages (Jmsg and Qmsg). They are coded as:

EmsgN (error-code, level, message, argl, ...) As with debug messages, you must explicitly code the of
arguments to be substituted in the message. error-code indicates the severity or class of error, and it may
be one of the following:

M_ABORT Causes the daemon to immediately abort. This
should be used only in extreme cases. It attempts
to produce a traceback.

M_ERROR_TERM Causes the daemon to immediately terminate.
This should be used only in extreme cases. It does
not, produce a traceback.

M_FATAL Causes the daemon to terminate the current job,
but the daemon keeps running

M_ERROR Reports the error. The daemon and the job con-
tinue running

M_WARNING Reports an warning message. The daemon and

the job continue running

M_INFO Reports an informational message.

There are other error message classes, but they are in a state of being redesigned or deprecated, so please
do not use them. Some actual examples are:

Emsgl(M_ABORT, 0, “Cannot create message thread: %s\n”, strerror(status));

Emsg3(M_WARNING, 0, “Connect to File daemon %s at %s:%d failed. Retrying ...\n”, client->hdr.name,
client->address, client->port);

Emsg3(M_FATAL, 0, “bdird<filed: bad response from Filed to %s command: %d %s\n”, ecmd, n, str-
error(errno));

1.4.18 Job Messages

Job messages are messages that pertain to a particular job such as a file that could not be saved, or the
number of files and bytes that were saved. They Are coded as:

Jmsg(jcr, M_FATAL, O, "Text of message");

A Jmsg with M_FATAL will fail the job. The Jmsg() takes varargs so can have any number of arguments
for substituted in a printf like format. Output from the Jmsg() will go to the Job report. jbr; If the Jmsg is
followed with a number such as Jmsgl(...), the number indicates the number of arguments to be substituted
(varargs is not standard for #defines), and what is more important is that the file and line number will be
prefixed to the message. This permits a sort of debug from user’s output.

14 Bacula Version 9.6.7

1.4.19 Queued Job Messages

Queued Job messages are similar to Jmsg()s except that the message is Queued rather than immediately
dispatched. This is necessary within the network subroutines and in the message editing routines. This is to
prevent recursive loops, and to ensure that messages can be delivered even in the event of a network error.

1.4.20 Memory Messages

Memory messages are messages that are edited into a memory buffer. Generally they are used in low level
routines such as the low level device file dev.c in the Storage daemon or in the low level Catalog routines.
These routines do not generally have access to the Job Control Record and so they return error essages
reformatted in a memory buffer. Mmsg() is the way to do this.

1.4.21 Bugs Database

We have a bugs database which is at: http://bugs.bacula.org , and as a developer you will need to respond
to bugs, perhaps bugs in general if you have time, otherwise just bugs that correspond to code that you
wrote.

If you need to answer bugs, please be sure to ask the Project Manager (currently Kern) to give you Developer
access to the bugs database. This allows you to modify statuses and close bugs.

The first thing is if you want to take over a bug, rather than just make a note, you should assign the bug
to yourself. This helps other developers know that you are the principal person to deal with the bug. You
can do so by going into the bug and clicking on the Update Issue button. Then you simply go to the
Assigned To box and select your name from the drop down box. To actually update it you must click on
the Update Information button a bit further down on the screen, but if you have other things to do such
as add a Note, you might wait before clicking on the Update Information button.

Generally, we set the Status field to either acknowledged, confirmed, or feedback when we first start working
on the bug. Feedback is set when we expect that the user should give us more information.

Normally, once you are reasonably sure that the bug is fixed, and a patch is made and attached to the bug
report, and/or in the SVN, you can close the bug. If you want the user to test the patch, then leave the bug
open, otherwise close it and set Resolution to Fixed. We generally close bug reports rather quickly, even
without confirmation, especially if we have run tests and can see that for us the problem is fixed. However,
in doing so, it avoids misunderstandings if you leave a note while you are closing the bug that says something
to the following effect: We are closing this bug because ... If for some reason, it does not fix your problem,
please feel free to reopen it, or to open a new bug report describing the problem”.

We do not recommend that you attempt to edit any of the bug notes that have been submitted, nor to delete
them or make them private. In fact, if someone accidentally makes a bug note private, you should ask the
reason and if at all possible (with his agreement) make the bug note public.

If the user has not properly filled in most of the important fields (platorm, OS, Product Version, ...) please
do not hesitate to politely ask him. Also, if the bug report is a request for a new feature, please politely
send the user to the Feature Request menu item on www.bacula.org. The same applies to a support request
(we answer only bugs), you might give the user a tip, but please politely refer him to the manual and the
Getting Support page of www.bacula.org.

http://bugs.bacula.org

Chapter 2

Bacula Git Usage

This chapter is intended to help you use the Git source code repositories to obtain, modify, and submit
Bacula source code.

2.1 Bacula Git repositories

As of September 2009, the Bacula source code has been split into three Git repositories. One is a repository
that holds the main Bacula source code with directories bacula, gui, and regress. The second repository
contains the directories docs directory, and the third repository contains the rescue directory. All three
repositories are hosted by UKFast.

Previously everything was in a single SVN repository. We have split the SVN repository into three because
Git offers significant advantages for ease of managing and integrating developer’s changes. However, one of
the disadvantages of Git is that you must work with the full repository, while SVN allows you to checkout
individual directories. If we put everything into a single Git repository it would be far bigger than most
developers would want to checkout, so we have separted the docs and rescue into their own repositories, and
moved only the parts that are most actively worked on by the developers (bacula, gui, and regress) to a the
Git Bacula repository.

Bacula developers must now have a certain knowledege of Git.

2.2 Git Usage

Please note that if you are familiar with SVN, Git is similar, (and better), but there can be a few surprising
differences that can be very confusing (nothing worse than converting from CVS to SVN).

The main Bacula Git repo contains the subdirectories bacula, gui, and regress. With Git it is not possible
to pull only a single directory, because of the hash code nature of Git, you must take all or nothing.

For developers, the most important thing to remember about Git and the bacula.org repository is not to
”force” a push to the repository. Doing so, can possibly rewrite the Git repository history and cause a lot
of problems for the project.

You can get a full copy of the Bacula Git repository with the following command:
git clone http://git.bacula.org/bacula.git bacula

This will put a read-only copy into the directory bacula in your current directory, and bacula will contain
the subdirectories: bacula, gui, and regress. Obviously you can use any name an not just bacula. In fact,

15

16 Bacula Version 9.6.7

once you have the repository in say bacula, you can copy the whole directory to another place and have a
fully functional git repository.

The above command needs to be done only once. Thereafter, you can:

cd bacula
git pull # refresh my repo with the latest code

As of August 2009, the size of the repository (bacula in the above example) will be approximately 55
Megabytes. However, if you build from source in this directory and do a lot of updates and regression
testing, the directory could become several hundred megabytes.

2.2.1 Learning Git

If you want to learn more about Git, we recommend that you visit:
http://book.git-scm.com/| .

Some of the differences between Git and SVN are:

e Your main Git directory is a full Git repository to which you can and must commit. In fact, we suggest
you commit frequently.

e When you commit, the commit goes into your local Git database. You must use another command to
write it to the master bacula.org repository (see below).

e The local Git database is kept in the directory .git at the top level of the directory.

e All the important Git configuration information is kept in the file .git/config in ASCII format that
is easy to manually edit.

e When you do a commit the changes are put in .git rather but not in the main bacula.org repository.

e You can push your changes to the external repository using the command git push providing you have
write permission on the repository.

e We restrict developers just learning git to have read-only access until they feel comfortable with git
before giving them write access.

e You can download all the current changes in the external repository and merge them into your master
branch using the command git pull.

e The command git add is used to add a new file to the repository AND to tell Git that you want a file
that has changed to be in the next commit. This has lots of advantages, because a git commit only
commits those files that have been explicitly added. Note with SVN add is used only to add new files
to the repo.

e You can add and commit all files modifed in one command using git commit -a.

e This extra use of add allows you to make a number of changes then add only a few of the files and
commit them, then add more files and commit them until you have committed everything. This has
the advantage of allowing you to more easily group small changes and do individaual commits on them.
By keeping commits smaller, and separated into topics, it makes it much easier to later select certain
commits for backporting.

e If you git pull from the main repository and make some changes, and before you do a git push
someone else pushes changes to the Git repository, your changes will apply to an older version of the
repository you will probably get an error message such as:

git push
To git@github.com:bacula/bacula.git
! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’git@github.com:bacula/bacula.git’

http://book.git-scm.com/

Bacula Version 9.6.7 17

which is Git’s way of telling you that the main repository has changed and that if you push your
changes, they will not be integrated properly. This is very similar to what happens when you do an
”svn update” and get merge conflicts. As we have noted above, you should never ask Git to force the
push. See below for an explanation of why.

e To integrate (merge) your changes properly, you should always do a git pull just prior to doing a git
push.

e If Git is unable to merge your changes or finds a conflict it will tell you and you must do conflict
resolution, which is much easier in Git than in SVN.

e Resolving conflicts is described below in the github section.

2.3 Step by Step Modifying Bacula Code

Suppose you want to download Bacula source code, build it, make a change, then submit your change to the
Bacula developers. What would you do?

e Tell git who you are:
git config --global user.name "First-name Last-name"
git config --global user.email "email@address.com"

Where you put your real name and your email address. Since this is global, you only need to do it
once on any given machine regardless of how many git repos you work with.

e Download the Source code:

git clone http://git.bacula.org/bacula.git bacula
e Configure and Build Bacula:

./configure (all-your-normal-options)

make
e Create a branch to work on:

cd bacula/bacula
git checkout -b bugfix master

e Edit, build, Test, ...

edit file jcr.h
make
test

Note: if you forget to create a working branch prior to making changes, and you make them on master,

this is no problem providing that you create the working branch before your first commit. So assuming
that you have edited master instead of your bugfix branch, you can simply:

git checkout -b bugfix master

and a new bugfix branch will be created and checked out. You can then proceed to committing to your
bugfix branch as described in the next step.

18

Bacula Version 9.6.7

commit your work:
git commit -am "Short comment on what I did"

Possibly repeat the above two items

Switch back to the master branch:

git checkout master

Pull the latest changes:

git pull

Get back on your bugfix branch:

git checkout bugfix

Merge your changes and correct any conflicts:

git rebase master bugfix

Fix any conflicts:
You will be notified if there are conflicts. The first thing to do is:

git diff

This will produce a diff of only the files having a conflict. Fix each file in turn. When it is fixed, the
diff for that file will go away.

For each file fixed, you must do the same as SVN, inform git with:
git add (name-of-file-no-longer-in-conflict)

When all files are fixed do:

git rebase --continue

If you find that it is impossible to reconcile the two branches or you made a mistake in correcting and
adding files, before you enter the:

git rebase --continue
you can instead enter:
git rebase —--abort

which will essentially cancel the the original git rebase and reset everything to the beginning with no
changes to your bugfix branch.

When you have completed the rebase and are ready to send a patch, do the following:

git checkout bugfix
git format-patch -M master

Look at the files produced. They should be numbered 0001-xxx.patch where there is one file for each
commit you did, number sequentially, and the xxx is what you put in the commit comment.

If the patch files are good, send them by email to the developers as attachments.
Then you can continue working on your code if you want, or start another branch with a new project.

If you continue working on your bugfix branch, you should do a git rebase master from time to time,
and when your changes are committed to the repo, you will be automatically synchronized. So that
the next git format-patch will produce only the changes you made since the last format-patch you
sent to the developers.

Bacula Version 9.6.7 19

2.3.1 More Details

Normally, you will work by creating a branch of the master branch of your repository, make your modifica-
tions, then make sure it is up to date, and finally create format-patch patches or push it to the bacula.org.
Assuming you call the Bacula repository bacula, you might use the following commands:

cd bacula
git checkout bacula

git pull
git checkout -b newbranch bacula
(edit, ...)

git add <file-edited>
git commit -m "<comment about commit>"

When you have completed working on your branch, you will do:

cd bacula

git checkout newbranch # ensure I am on my branch
git pull # get latest source code
git rebase master # merge my code

If you have completed your edits before anyone has modified the repository, the git rebase master will
report that there was nothing to do. Otherwise, it will merge the changes that were made in the repository
before your changes. If there are any conflicts, Git will tell you. Typically resolving conflicts with Git is
relatively easy. You simply make a diff:

git diff

Then edit each file that was listed in the git diff to remove the conflict, which will be indicated by lines of:

<<<<<<< HEAD
text
SO>>>>>>
other text

where text is what is in the Bacula repository, and other text is what you have changed.

Once you have eliminated the conflict, the git diff will show nothing, and you must do a:

git add <file-with-conflicts-fixed>

Once you have fixed all the files with conflicts in the above manner, you enter:

git rebase --continue

and your rebase will be complete.

If for some reason, before doing the —continue, you want to abort the rebase and return to what you had,
you enter:

git rebase --abort

20 Bacula Version 9.6.7

Finally to make a set of patch files
git format-patch -M master

When you see your changes have been integrated and pushed to the main repo, you can delete your branch
with:

git checkout master
git branch -D newbranch

2.4 Forcing Changes

If you want to understand why it is not a good idea to force a push to the repository, look at the following
picture:

Push A Push B
git pull HEAD
Your mods
Push A Push B
git pull Your mods HEAD
Push A Push B
git pull Your mods

HEAD

The above graphic has three lines of circles. Each circle represents a commit, and time runs from the left
to the right. The top line shows the repository just before you are going to do a push. Note the point at
which you pulled is the circle on the left, your changes are represented by the circle labeled Your mods.
It is shown below to indicate that the changes are only in your local repository. Finally, there are pushes A
and B that came after the time at which you pulled.

If you were to force your changes into the repository, Git would place them immediately after the point at
which you pulled them, so they would go before the pushes A and B. However, doing so would rewrite the
history of the repository and make it very difficult for other users to synchronize since they would have to
somehow wedge their changes at some point before the current HEAD of the repository. This situation is
shown by the second line of pushes.

What you really want to do is to put your changes after Push B (the current HEAD). This is shown in the
third line of pushes. The best way to accomplish this is to work in a branch, pull the repository so you

Bacula Version 9.6.7 21

have your master equal to HEAD (in first line), then to rebase your branch on the current master and then
commit it. The exact commands to accomplish this are shown in the next couple of sections.

Bacula Version 9.6.7

Chapter 3

Bacula FD Plugin API

To write a Bacula plugin, you create a dynamic shared object program (or dll on Win32) with a particular
name and two exported entry points, place it in the Plugins Directory, which is defined in the bacula-
fd.conf file in the Client resource, and when the FD starts, it will load all the plugins that end with -fd.so
(or -fd.dll on Win32) found in that directory.

3.1 Normal vs Command vs Options Plugins

In general, there are three ways that plugins are called. The first way, is when a particular event is detected
in Bacula, it will transfer control to each plugin that is loaded in turn informing the plugin of the event.
This is very similar to how a RunScript works, and the events are very similar. Once the plugin gets
control, it can interact with Bacula by getting and setting Bacula variables. In this way, it behaves much
like a RunScript. Currently very few Bacula variables are defined, but they will be implemented as the need
arises, and it is very extensible.

We plan to have plugins register to receive events that they normally would not receive, such as an event for
each file examined for backup or restore. This feature is not yet implemented.

The second type of plugin, which is more useful and fully implemented in the current version is what we call
a command plugin. As with all plugins, it gets notified of important events as noted above (details described
below), but in addition, this kind of plugin can accept a command line, which is a:

Plugin = <command-string>

directive that is placed in the Include section of a FileSet and is very similar to the "File = 7 directive. When
this Plugin directive is encountered by Bacula during backup, it passes the ”command” part of the Plugin
directive only to the plugin that is explicitly named in the first field of that command string. This allows
that plugin to backup any file or files on the system that it wants. It can even create ”virtual files” in the
catalog that contain data to be restored but do not necessarily correspond to actual files on the filesystem.

The important features of the command plugin entry points are:

e It is triggered by a "Plugin =" directive in the FileSet

e Only a single plugin is called that is named on the ”Plugin =" directive.

”

e The full command string after the ”Plugin =
backup/restore.

is passed to the plugin so that it can be told what to

The third type of plugin is the Options Plugin, this kind of plugin is useful to implement some custom filter
on data. For example, you can implement a compression algorithm in a very simple way. Bacula will call this

23

24 Bacula Version 9.6.7

plugin for each file that is selected in a FileSet (according to Wild/Regex/Exclude/Include rules). As with
all plugins, it gets notified of important events as noted above (details described below), but in addition,
this kind of plugin can be placed in a Options group, which is a:

FileSet {
Name = TestFS
Include {
Options {
Compression = GZIP1
Signature = MD5
Wild = "*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>