Z3
Public Member Functions
RatNumRef Class Reference
+ Inheritance diagram for RatNumRef:

Public Member Functions

def numerator (self)
 
def denominator (self)
 
def numerator_as_long (self)
 
def denominator_as_long (self)
 
def is_int (self)
 
def is_real (self)
 
def is_int_value (self)
 
def as_long (self)
 
def as_decimal (self, prec)
 
def as_string (self)
 
def as_fraction (self)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Rational values.

Definition at line 2952 of file z3py.py.

Member Function Documentation

◆ as_decimal()

def as_decimal (   self,
  prec 
)
 Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.

>>> v = RealVal("1/5")
>>> v.as_decimal(3)
'0.2'
>>> v = RealVal("1/3")
>>> v.as_decimal(3)
'0.333?'

Definition at line 3018 of file z3py.py.

3018  def as_decimal(self, prec):
3019  """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
3020 
3021  >>> v = RealVal("1/5")
3022  >>> v.as_decimal(3)
3023  '0.2'
3024  >>> v = RealVal("1/3")
3025  >>> v.as_decimal(3)
3026  '0.333?'
3027  """
3028  return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
3029 
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ as_fraction()

def as_fraction (   self)
Return a Z3 rational as a Python Fraction object.

>>> v = RealVal("1/5")
>>> v.as_fraction()
Fraction(1, 5)

Definition at line 3039 of file z3py.py.

3039  def as_fraction(self):
3040  """Return a Z3 rational as a Python Fraction object.
3041 
3042  >>> v = RealVal("1/5")
3043  >>> v.as_fraction()
3044  Fraction(1, 5)
3045  """
3046  return Fraction(self.numerator_as_long(), self.denominator_as_long())
3047 
3048 

◆ as_long()

def as_long (   self)

Definition at line 3014 of file z3py.py.

3014  def as_long(self):
3015  _z3_assert(self.is_int_value(), "Expected integer fraction")
3016  return self.numerator_as_long()
3017 

Referenced by BitVecNumRef.as_signed_long(), RatNumRef.denominator_as_long(), and RatNumRef.numerator_as_long().

◆ as_string()

def as_string (   self)
Return a Z3 rational numeral as a Python string.

>>> v = Q(3,6)
>>> v.as_string()
'1/2'

Definition at line 3030 of file z3py.py.

3030  def as_string(self):
3031  """Return a Z3 rational numeral as a Python string.
3032 
3033  >>> v = Q(3,6)
3034  >>> v.as_string()
3035  '1/2'
3036  """
3037  return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
3038 
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.

Referenced by IntNumRef.as_long(), BitVecNumRef.as_long(), and FiniteDomainNumRef.as_long().

◆ denominator()

def denominator (   self)
 Return the denominator of a Z3 rational numeral.

>>> is_rational_value(Q(3,5))
True
>>> n = Q(3,5)
>>> n.denominator()
5

Definition at line 2970 of file z3py.py.

2970  def denominator(self):
2971  """ Return the denominator of a Z3 rational numeral.
2972 
2973  >>> is_rational_value(Q(3,5))
2974  True
2975  >>> n = Q(3,5)
2976  >>> n.denominator()
2977  5
2978  """
2979  return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
2980 
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.denominator_as_long(), and RatNumRef.is_int_value().

◆ denominator_as_long()

def denominator_as_long (   self)
 Return the denominator as a Python long.

>>> v = RealVal("1/3")
>>> v
1/3
>>> v.denominator_as_long()
3

Definition at line 2994 of file z3py.py.

2994  def denominator_as_long(self):
2995  """ Return the denominator as a Python long.
2996 
2997  >>> v = RealVal("1/3")
2998  >>> v
2999  1/3
3000  >>> v.denominator_as_long()
3001  3
3002  """
3003  return self.denominator().as_long()
3004 

Referenced by RatNumRef.as_fraction(), and RatNumRef.is_int_value().

◆ is_int()

def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Reimplemented from ArithRef.

Definition at line 3005 of file z3py.py.

3005  def is_int(self):
3006  return False
3007 
def is_int(a)
Definition: z3py.py:2646

Referenced by IntNumRef.as_long(), RatNumRef.is_int_value(), and ArithSortRef.subsort().

◆ is_int_value()

def is_int_value (   self)

Definition at line 3011 of file z3py.py.

3011  def is_int_value(self):
3012  return self.denominator().is_int() and self.denominator_as_long() == 1
3013 
def is_int_value(a)
Definition: z3py.py:2692

Referenced by RatNumRef.as_long().

◆ is_real()

def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Reimplemented from ArithRef.

Definition at line 3008 of file z3py.py.

3008  def is_real(self):
3009  return True
3010 
def is_real(a)
Definition: z3py.py:2665

◆ numerator()

def numerator (   self)
 Return the numerator of a Z3 rational numeral.

>>> is_rational_value(RealVal("3/5"))
True
>>> n = RealVal("3/5")
>>> n.numerator()
3
>>> is_rational_value(Q(3,5))
True
>>> Q(3,5).numerator()
3

Definition at line 2955 of file z3py.py.

2955  def numerator(self):
2956  """ Return the numerator of a Z3 rational numeral.
2957 
2958  >>> is_rational_value(RealVal("3/5"))
2959  True
2960  >>> n = RealVal("3/5")
2961  >>> n.numerator()
2962  3
2963  >>> is_rational_value(Q(3,5))
2964  True
2965  >>> Q(3,5).numerator()
2966  3
2967  """
2968  return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
2969 
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.numerator_as_long().

◆ numerator_as_long()

def numerator_as_long (   self)
 Return the numerator as a Python long.

>>> v = RealVal(10000000000)
>>> v
10000000000
>>> v + 1
10000000000 + 1
>>> v.numerator_as_long() + 1 == 10000000001
True

Definition at line 2981 of file z3py.py.

2981  def numerator_as_long(self):
2982  """ Return the numerator as a Python long.
2983 
2984  >>> v = RealVal(10000000000)
2985  >>> v
2986  10000000000
2987  >>> v + 1
2988  10000000000 + 1
2989  >>> v.numerator_as_long() + 1 == 10000000001
2990  True
2991  """
2992  return self.numerator().as_long()
2993 

Referenced by RatNumRef.as_fraction(), and RatNumRef.as_long().