My Project
kInline.h
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /***************************************************************
5  * File: kInline.h
6  * Purpose: implementation of std related inline routines
7  * Author: obachman (Olaf Bachmann)
8  * Created: 8/00
9  *******************************************************************/
10 #ifndef KINLINE_H
11 #define KINLINE_H
12 
13 #if !defined(NO_KINLINE) || defined(KUTIL_CC)
14 /* this file is a header file with inline routines,
15  * if NO_KINLINE is not defined (AND ONLY THEN!)
16  * otherwise it is an part of kutil.cc and a source file!
17  * (remark: NO_KINLINE is defined by KDEBUG, i.e. in the debug version)
18  */
19 
20 #include "omalloc/omalloc.h"
21 #include "misc/options.h"
23 #include "polys/kbuckets.h"
24 
25 #include "kernel/polys.h"
26 
27 #ifdef HAVE_SHIFTBBA
28 #include "polys/shiftop.h"
29 #endif
30 
31 
32 #define HAVE_TAIL_BIN
33 // This doesn't really work, fixme, if necessary
34 // #define HAVE_LM_BIN
35 
36 
37 
39 {
40  assume(i>= 0 && i<=sl);
41  assume(S_2_R[i] >= 0 && S_2_R[i] <= tl);
42  TObject* TT = R[S_2_R[i]];
43  assume(TT != NULL && TT->p == S[i]);
44  return TT;
45 }
46 
48 {
49  if (i >= 0 && i <= sl)
50  {
51  int sri= S_2_R[i];
52  if ((sri >= 0) && (sri <= tl))
53  {
54  TObject* t = R[sri];
55  if ((t != NULL) && (t->p == S[i]))
56  return t;
57  }
58  // last but not least, try kFindInT
59  sri = kFindInT(S[i], T, tl);
60  if (sri >= 0)
61  return &(T[sri]);
62  }
63  return NULL;
64 }
65 
67 {
68  if (tailRing == currRing)
69  return kNoether;
70  else
71  {
72  assume((kNoether == NULL && t_kNoether == NULL) ||
73  (kNoether != NULL && t_kNoether != NULL));
74  return t_kNoether;
75  }
76 }
77 
78 /***************************************************************
79  *
80  * Operation on TObjects
81  *
82  ***************************************************************/
83 
85 {
86  TSet T = (TSet)omAlloc0(setmaxT*sizeof(TObject));
87  for (int i=setmaxT-1; i>=0; i--)
88  {
89  T[i].tailRing = currRing;
90  T[i].i_r = -1;
91  }
92  return T;
93 }
94 
96 {
97  return (TObject**) omAlloc0(setmaxT*sizeof(TObject*));
98 }
99 
100 KINLINE unsigned long* initsevT()
101 {
102  return (unsigned long*) omAlloc0(setmaxT*sizeof(unsigned long));
103 }
104 
105 // initialization
106 KINLINE void sTObject::Set(ring r)
107 {
108  tailRing = r;
109 }
111 {
112  memset(this, 0, sizeof(sTObject));
113  i_r = -1;
114  Set(r);
115 }
117 {
118  Init(r);
119 }
120 KINLINE void sTObject::Set(poly p_in, ring r)
121 {
122  if (r != currRing)
123  {
124  assume(r == tailRing);
125 #ifdef HAVE_SHIFTBBA
126  if (r->isLPring)
127  {
128  shift = si_max(p_mFirstVblock(p_in, r) - 1, 0);
129  if (!shift) p_Test(p_in, r);
130  }
131  else
132 #endif
133  {
134  p_Test(p_in, r);
135  }
136  t_p = p_in;
137  }
138  else
139  {
140 #ifdef HAVE_SHIFTBBA
141  if (currRing->isLPring)
142  {
143  shift = si_max(p_mFirstVblock(p_in, currRing) - 1, 0);
144  if (!shift) p_Test(p_in, currRing);
145  }
146  else
147 #endif
148  {
149  p_Test(p_in, currRing);
150  }
151  p = p_in;
152  }
153  pLength=::pLength(p_in);
154 }
155 
156 KINLINE sTObject::sTObject(poly p_in, ring r)
157 {
158  Init(r);
159  Set(p_in, r);
160 }
161 
162 KINLINE void sTObject::Set(poly p_in, ring c_r, ring t_r)
163 {
164  if (c_r != t_r)
165  {
166  assume(c_r == currRing && t_r == tailRing);
167 #ifdef HAVE_SHIFTBBA
168  if (c_r->isLPring)
169  {
170  shift = si_max(p_mFirstVblock(p_in, c_r) - 1, 0);
171  if (!shift) p_Test(p_in, currRing);
172  }
173  else
174 #endif
175  {
176  p_Test(p_in, currRing);
177  }
178  p = p_in;
179  pLength=::pLength(p_in);
180  }
181  else
182  {
183  Set(p_in, c_r);
184  }
185 }
186 
187 KINLINE sTObject::sTObject(poly p_in, ring c_r, ring t_r)
188 {
189  Init(t_r);
190  Set(p_in, c_r, t_r);
191 }
192 
194 {
195  *this = *T;
196  if (copy)
197  {
198  if (t_p != NULL)
199  {
200  t_p = p_Copy(t_p, tailRing);
202  }
203  else
204  {
205  p = p_Copy(p, currRing);
206  }
207  }
208 }
209 
211 {
212  if (t_p != NULL)
213  {
214  p_Delete(&t_p, tailRing);
215  if (p != NULL)
216  p_LmFree(p, currRing);
217  }
218  else
219  {
220  p_Delete(&p, currRing);
221  }
222 }
223 
225 {
226  p = NULL;
227  t_p = NULL;
228  ecart = 0;
229  length = 0;
230  pLength = 0;
231  FDeg = 0;
233 }
234 
236 {
237  if (t_p != NULL)
238  {
239  t_p = p_Copy(t_p, tailRing);
240  if (p != NULL) /* and t_p!=NULL*/
241  {
242  p = p_LmInit(p, currRing);
244  pNext(p) = pNext(t_p);
245  }
246  }
247  else
248  {
249  p = p_Copy(p, currRing);
250  }
251 }
252 
254 {
255  if (p == NULL && t_p != NULL)
257 
258  return p;
259 }
261 {
262  if (t_p == NULL)
263  {
264  if (p != NULL && tailRing != currRing)
265  {
267  return t_p;
268  }
269  return p;
270  }
271  return t_p;
272 }
274 {
275  assume(r == tailRing || r == currRing);
276  if (r == currRing)
277  return GetLmCurrRing();
278 
279  if (t_p == NULL && p != NULL)
281 
282  return t_p;
283 }
284 
285 KINLINE void sTObject::GetLm(poly &p_r, ring &r_r) const
286 {
287  if (t_p != NULL)
288  {
289  p_r = t_p;
290  r_r = tailRing;
291  }
292  else
293  {
294  p_r = p;
295  r_r = currRing;
296  }
297 }
298 
300 {
301  return (p == NULL && t_p == NULL);
302 }
303 
305 {
306  if (pLength <= 0) pLength = ::pLength(p != NULL ? p : t_p);
307  return pLength;
308 }
309 
311 {
312  if (p == NULL && t_p != NULL)
314 }
315 
317 {
318  assume(p != NULL || t_p != NULL);
319  if (t_p != NULL) return pNext(t_p);
320  return pNext(p);
321 }
322 
323 // Iterations
325 {
326  assume(p != NULL || t_p != NULL);
327  if (t_p != NULL)
328  {
330  if (p != NULL)
331  {
332  p_LmFree(p, currRing);
333  p = NULL;
334  }
335  }
336  else
337  {
339  }
341 }
342 
343 
344 // arithmetic
346 {
347  if (t_p != NULL)
348  {
349  t_p = p_Mult_nn(t_p, n, tailRing);
350  if (p != NULL) pSetCoeff0(p, pGetCoeff(t_p));
351  }
352  else
353  {
354  p = p_Mult_nn(p, n, currRing, tailRing);
355  }
356 }
357 
359 {
360  if (t_p != NULL)
361  {
362  pNormalize(t_p);
363  if (p != NULL) pSetCoeff0(p, pGetCoeff(t_p));
364  }
365  else
366  {
367  pNormalize(p);
368  }
370 }
371 
373 {
374  if (bucket != NULL)
376 }
377 
379 {
380  if (t_p != NULL)
381  {
383  if (p != NULL) pSetCoeff0(p, pGetCoeff(t_p));
384  }
385  else
386  {
388  }
389 }
390 
391 KINLINE void
392 sTObject::ShallowCopyDelete(ring new_tailRing, omBin new_tailBin,
393  pShallowCopyDeleteProc p_shallow_copy_delete,
394  BOOLEAN set_max)
395 {
396  if (new_tailBin == NULL) new_tailBin = new_tailRing->PolyBin;
397  if (t_p != NULL)
398  {
399  t_p = p_shallow_copy_delete(t_p, tailRing, new_tailRing, new_tailBin);
400  if (p != NULL)
401  pNext(p) = pNext(t_p);
402  if (new_tailRing == currRing)
403  {
404  if (p == NULL) p = t_p;
405  else p_LmFree(t_p, tailRing);
406  t_p = NULL;
407  }
408  }
409  else if (p != NULL) /* && t_p==NULL */
410  {
411  if (pNext(p) != NULL)
412  {
413  pNext(p) = p_shallow_copy_delete(pNext(p),
414  tailRing, new_tailRing, new_tailBin);
415  }
416  if (new_tailRing != currRing)
417  {
418  t_p = k_LmInit_currRing_2_tailRing(p, new_tailRing);
419  pNext(t_p) = pNext(p);
420  }
421  }
422  if (max_exp != NULL)
423  {
424  max_exp = p_shallow_copy_delete(max_exp,tailRing,new_tailRing,new_tailBin);
425  }
426  else if (set_max && pNext(t_p) != NULL)
427  {
428  max_exp = p_GetMaxExpP(pNext(t_p), new_tailRing);
429  }
430  tailRing = new_tailRing;
431 }
432 
434 {
435  if (p != NULL) return p_FDeg(p, currRing);
436  return tailRing->pFDeg(t_p, tailRing);
437 }
439 {
440  if (p != NULL) return p_Totaldegree(p, currRing);
441  return p_Totaldegree(t_p,tailRing);
442 }
444 {
445  FDeg = this->pFDeg();
446  return FDeg;
447 }
449 {
450  assume(FDeg == this->pFDeg());
451  return FDeg;
452 }
454 {
455  return tailRing->pLDeg(GetLmTailRing(), &length, tailRing);
456 }
458 {
459  FDeg = this->pFDeg();
460  long d = this->pLDeg();
461  ecart = d - FDeg;
462  return d;
463 }
464 
465 //extern void pCleardenom(poly p);
466 // extern void pNorm(poly p);
467 
468 // manipulations
470 {
471  assume(p != NULL);
472  if (TEST_OPT_CONTENTSB)
473  {
474  number n;
475  if (t_p != NULL)
476  {
479  }
480  else
481  {
483  }
484  if (!nIsOne(n))
485  {
487  denom->n=nInvers(n);
488  denom->next=DENOMINATOR_LIST;
489  DENOMINATOR_LIST=denom;
490  }
491  nDelete(&n);
492  }
493  else
494  {
495  if (t_p != NULL)
496  {
499  }
500  else
501  {
503  }
504  }
505 }
506 
508 {
509  assume(p != NULL);
510  if (t_p != NULL)
511  {
513  if (!n_GreaterZero(pGetCoeff(t_p),tailRing->cf))
514  {
515  t_p=p_Neg (t_p,tailRing);
516  }
518  }
519  else
520  {
522  if (!n_GreaterZero(pGetCoeff(p),currRing->cf))
523  {
524  p=p_Neg (p,currRing);
525  }
526  }
527 }
528 
529 KINLINE void sTObject::pNorm() // pNorm seems to be a _bad_ method name...
530 {
531  assume(p != NULL);
532  if (! is_normalized)
533  {
534  p_Norm(p, currRing);
535  if (t_p != NULL)
538  }
539 }
540 
541 
542 
543 /***************************************************************
544  *
545  * Operation on LObjects
546  *
547  ***************************************************************/
548 // Initialization
550 {
551  sTObject::Clear();
552  sev = 0;
553 }
554 // Initialization
556 {
558  if (bucket != NULL)
560 }
561 
563 {
564  memset(this, 0, sizeof(sLObject));
565  i_r1 = -1;
566  i_r2 = -1;
567  i_r = -1;
568  Set(r);
569 }
571 {
572  Init(r);
573 }
574 KINLINE sLObject::sLObject(poly p_in, ring r)
575 {
576  Init(r);
577  Set(p_in, r);
578 }
579 
580 KINLINE sLObject::sLObject(poly p_in, ring c_r, ring t_r)
581 {
582  Init(t_r);
583  Set(p_in, c_r, t_r);
584 }
585 
587 {
588  if (bucket == NULL)
589  {
590  unsigned l = GetpLength();
591  if (use_bucket && (l > 1))
592  {
593  poly tp = GetLmTailRing();
594  assume(l == ::pLength(tp));
596  kBucketInit(bucket, pNext(tp), l-1);
597  pNext(tp) = NULL;
598  if (p != NULL) pNext(p) = NULL;
599  pLength = 0;
600  }
601  }
602 }
603 
604 KINLINE void sLObject::SetLmTail(poly lm, poly p_tail, int p_Length, int use_bucket, ring _tailRing)
605 {
606 
607  Set(lm, _tailRing);
608  if (use_bucket)
609  {
610  bucket = kBucketCreate(_tailRing);
611  kBucketInit(bucket, p_tail, p_Length);
612  pNext(lm) = NULL;
613  pLength = 0;
614  }
615  else
616  {
617  pNext(lm) = p_tail;
618  pLength = p_Length + 1;
619  }
620 }
621 
623 {
624  if (bucket != NULL)
625  {
627  }
628  else
629  {
630  poly _p = (t_p != NULL ? t_p : p);
631  assume(_p != NULL);
632  pNext(_p) = __p_Mult_nn(pNext(_p), n, tailRing);
633  }
634 }
635 
637  poly spNoether)
638 {
639  if (bucket != NULL)
640  {
641  kBucket_Minus_m_Mult_p(bucket, m, q, &lq, spNoether);
642  }
643  else
644  {
645  if (lq<=0) lq= ::pLength(q);
646  poly _p = (t_p != NULL ? t_p : p);
647  assume(_p != NULL);
648 
649  int lp=pLength-1;
650  pNext(_p) = p_Minus_mm_Mult_qq( pNext(_p), m, q, lp, lq,
651  spNoether, tailRing );
652  pLength=lp+1;
653 // tailRing->p_Procs->p_Minus_mm_Mult_qq(pNext(_p), m, q, shorter,spNoether, tailRing, last);
654 // pLength += lq - shorter;
655  }
656 }
657 
659 {
661  if (bucket != NULL)
662  {
663  poly _p = kBucketExtractLm(bucket);
664  if (_p == NULL)
665  {
667  p = t_p = NULL;
668  return;
669  }
670  Set(_p, tailRing);
671  }
672  else
673  {
674  pLength--;
675  }
676 }
677 
679 {
680  poly ret = GetLmTailRing();
681  poly pn;
682 
683  assume(p != NULL || t_p != NULL);
684 
685  if (bucket != NULL)
686  {
687  pn = kBucketExtractLm(bucket);
688  if (pn == NULL)
690  }
691  else
692  {
693  pn = pNext(ret);
694  }
695  pLength--;
696  pNext(ret) = NULL;
697  if (p != NULL && t_p != NULL)
698  p_LmFree(p, currRing);
699 
700  Set(pn, tailRing);
701  return ret;
702 }
703 
705 {
706  //kTest_L(this);
707  poly tp = GetLmTailRing();
708  assume(tp != NULL);
709 
710  if (bucket != NULL)
711  {
712  kBucketClear(bucket, &pNext(tp), &pLength);
714  pLength++;
715  }
716  return tp;
717 }
718 
719 
721 {
722  //kTest_L(this);
723  if (p == NULL)
724  {
726  ((lmBin!=NULL)?lmBin:currRing->PolyBin));
727  FDeg = pFDeg();
728  }
729  else if ((lmBin != NULL) && (lmBin != currRing->PolyBin))
730  {
732  FDeg = pFDeg();
733  }
734 
735  if (bucket != NULL)
736  {
739  pLength++;
740  if (t_p != NULL) pNext(t_p) = pNext(p);
741  }
742  //kTest_L(this);
743  return p;
744 }
745 
746 KINLINE void
747 sLObject::ShallowCopyDelete(ring new_tailRing,
748  pShallowCopyDeleteProc p_shallow_copy_delete)
749 {
750  if (bucket != NULL)
751  kBucketShallowCopyDelete(bucket, new_tailRing, new_tailRing->PolyBin,
752  p_shallow_copy_delete);
753  sTObject::ShallowCopyDelete(new_tailRing,
754  new_tailRing->PolyBin,p_shallow_copy_delete,
755  FALSE);
756 }
757 
759 {
760  if (t_p != NULL)
761  {
763  }
764  else
765  {
767  }
768 }
769 
771 {
772  if (bucket != NULL)
773  {
775  kBucket_pt new_bucket = kBucketCreate(tailRing);
776  kBucketInit(new_bucket,
777  p_Copy(bucket->buckets[i], tailRing),
778  bucket->buckets_length[i]);
779  bucket = new_bucket;
780  if (t_p != NULL) pNext(t_p) = NULL;
781  if (p != NULL) pNext(p) = NULL;
782  }
783  TObject::Copy();
784 }
785 
787 {
788  poly tp = GetLmTailRing();
789  assume(tp != NULL);
790  if (bucket != NULL)
791  {
793  pNext(tp) = bucket->buckets[i];
794  long ldeg = tailRing->pLDeg(tp, &length, tailRing);
795  pNext(tp) = NULL;
796  return ldeg;
797  }
798  else
799  return tailRing->pLDeg(tp, &length, tailRing);
800 }
802 {
803  if (! deg_last || bucket != NULL) return sLObject::pLDeg();
804 
805  long ldeg;
806  ldeg = tailRing->pLDeg(GetLmTailRing(), &length, tailRing);
807 #ifndef SING_NDEBUG
808  if ( pLength == 0)
811 #else
812  pLength=length;
813 #endif
814  return ldeg;
815 }
816 
818 {
819  FDeg = this->pFDeg();
820  long d = this->pLDeg();
821  ecart = d - FDeg;
822  return d;
823 }
825 {
826  FDeg = this->pFDeg();
827  long d = this->pLDeg(use_last);
828  ecart = d - FDeg;
829  return d;
830 }
832 {
833  if (bucket == NULL)
834  return sTObject::GetpLength();
836  return bucket->buckets_length[i] + 1;
837 }
839 {
840  if (length_pLength)
841  {
842  length = this->GetpLength();
843  }
844  else
845  this->pLDeg();
846  return length;
847 }
849 {
850  poly tp = GetLmTailRing();
851  assume(tp != NULL);
852  if (bucket != NULL)
853  {
855  pNext(tp) = bucket->buckets[i];
856  long m = p_MinComp(tp, tailRing);
857  pNext(tp) = NULL;
858  return m;
859  }
860  else
861  return p_MinComp(tp, tailRing);
862 }
864 {
865  poly pp;
866  ring r;
867  GetLm(pp, r);
868  assume(pp != NULL);
869  return p_GetComp(pp, r);
870 }
871 
873 {
874  memset(this, 0, sizeof(*this));
875  memcpy(this, &t, sizeof(sTObject));
876  return *this;
877 }
878 
880 {
881  if (p1 == NULL) return NULL;
882  if (i_r1 == -1) i_r1 = kFindInT(p1, s->T, s->tl);
883  assume(i_r1 >= 0 && i_r1 <= s->tl);
884  TObject* T = s->R[i_r1];
885  assume(T->p == p1);
886  return T;
887 }
888 
890 {
891  if (p1 == NULL) return NULL;
892  assume(p2 != NULL);
893  if (i_r2 == -1) i_r2 = kFindInT(p2, strat->T, strat->tl);
894  assume(i_r2 >= 0 && i_r2 <= strat->tl);
895  TObject* T = strat->R[i_r2];
896  assume(T->p == p2);
897  return T;
898 }
899 
901  TObject* &T_1, TObject* &T_2)
902 {
903  if (p1 == NULL)
904  {
905  T_1 = NULL;
906  T_2 = NULL;
907  return;
908  }
909  assume(p1 != NULL && p2 != NULL);
910  if (i_r1 == -1) i_r1 = kFindInT(p1, strat->T, strat->tl);
911  if (i_r2 == -1) i_r2 = kFindInT(p2, strat->T, strat->tl);
912  assume(i_r1 >= 0 && i_r1 <= strat->tl);
913  assume(i_r2 >= 0 && i_r2 <= strat->tl);
914  T_1 = strat->R[i_r1];
915  T_2 = strat->R[i_r2];
916  assume(T_1->p == p1);
917  assume(T_2->p == p2);
918  return;
919 }
920 
921 /***************************************************************
922  *
923  * Conversion of polys
924  *
925  ***************************************************************/
926 
927 KINLINE poly k_LmInit_currRing_2_tailRing(poly p, ring tailRing, omBin tailBin)
928 {
929 
930  poly t_p = p_LmInit(p, currRing, tailRing, tailBin);
931  pNext(t_p) = pNext(p);
932  pSetCoeff0(t_p, pGetCoeff(p));
933  return t_p;
934 }
935 
936 KINLINE poly k_LmInit_tailRing_2_currRing(poly t_p, ring tailRing, omBin lmBin)
937 {
938  poly p = p_LmInit(t_p, tailRing, currRing, lmBin);
939  pNext(p) = pNext(t_p);
940  pSetCoeff0(p, pGetCoeff(t_p));
941  return p;
942 }
943 
944 // this should be made more efficient
945 KINLINE poly k_LmShallowCopyDelete_currRing_2_tailRing(poly p, ring tailRing, omBin tailBin)
946 {
947  poly np = k_LmInit_currRing_2_tailRing(p, tailRing, tailBin);
948  p_LmFree(p, currRing);
949  return np;
950 }
951 
953 {
954  poly np = k_LmInit_tailRing_2_currRing(p, tailRing, lmBin);
955  p_LmFree(p, tailRing);
956  return np;
957 }
958 
959 KINLINE poly k_LmInit_currRing_2_tailRing(poly p, ring tailRing)
960 {
961  return k_LmInit_currRing_2_tailRing(p, tailRing, tailRing->PolyBin);
962 }
963 
964 KINLINE poly k_LmInit_tailRing_2_currRing(poly p, ring tailRing)
965 {
966  return k_LmInit_tailRing_2_currRing(p, tailRing, currRing->PolyBin);
967 }
968 
970 {
971  return k_LmShallowCopyDelete_currRing_2_tailRing(p, tailRing, tailRing->PolyBin);
972 }
973 
975 {
976  return k_LmShallowCopyDelete_tailRing_2_currRing(p, tailRing, currRing->PolyBin);
977 }
978 
979 /***************************************************************
980  *
981  * Lcm business
982  *
983  ***************************************************************/
984 // get m1 = LCM(LM(p1), LM(p2))/LM(p1)
985 // m2 = LCM(LM(p1), LM(p2))/LM(p2)
986 KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r,
987  poly &m1, poly &m2, const ring m_r)
988 {
989  p_LmCheckPolyRing(p1, p_r);
990  p_LmCheckPolyRing(p2, p_r);
991 
992  int i;
993  long x;
994  m1 = p_Init(m_r,m_r->PolyBin);
995  m2 = p_Init(m_r,m_r->PolyBin);
996 
997  for (i = p_r->N; i; i--)
998  {
999  x = p_GetExpDiff(p1, p2, i, p_r);
1000  if (x > 0)
1001  {
1002  if (x > (long) m_r->bitmask) goto false_return;
1003  p_SetExp(m2,i,x, m_r);
1004  p_SetExp(m1,i,0, m_r);
1005  }
1006  else
1007  {
1008  if (-x > (long) m_r->bitmask) goto false_return;
1009  p_SetExp(m1,i,-x, m_r);
1010  p_SetExp(m2,i,0, m_r);
1011  }
1012  }
1013 
1014  p_Setm(m1, m_r);
1015  p_Setm(m2, m_r);
1016  return TRUE;
1017 
1018  false_return:
1019  p_LmFree(m1, m_r);
1020  p_LmFree(m2, m_r);
1021  m1 = m2 = NULL;
1022  return FALSE;
1023 }
1024 
1025 #ifdef HAVE_RINGS
1026 // get m1 = LCM(LM(p1), LM(p2))/LM(p1)
1027 // m2 = LCM(LM(p1), LM(p2))/LM(p2) in tailRing
1028 // lcm = LCM(LM(p1), LM(p2)) in leadRing
1029 KINLINE void k_GetStrongLeadTerms(const poly p1, const poly p2, const ring leadRing,
1030  poly &m1, poly &m2, poly &lcm, const ring tailRing)
1031 {
1032  p_LmCheckPolyRing(p1, leadRing);
1033  p_LmCheckPolyRing(p2, leadRing);
1034 
1035  int i;
1036  int x;
1037  int e1;
1038  int e2;
1039  int s;
1040  m1 = p_Init(tailRing,tailRing->PolyBin);
1041  m2 = p_Init(tailRing,tailRing->PolyBin);
1042  lcm = p_Init(leadRing,leadRing->PolyBin);
1043 
1044  for (i = leadRing->N; i>=0; i--)
1045  {
1046  e1 = p_GetExp(p1,i,leadRing);
1047  e2 = p_GetExp(p2,i,leadRing);
1048  x = e1 - e2;
1049  if (x > 0)
1050  {
1051  p_SetExp(m2,i,x, tailRing);
1052  //p_SetExp(m1,i,0, tailRing); // done by p_Init
1053  s = e1;
1054  }
1055  else if (x<0)
1056  {
1057  p_SetExp(m1,i,-x, tailRing);
1058  //p_SetExp(m2,i,0, tailRing); // done by p_Init
1059  s = e2;
1060  }
1061  else
1062  s = e1; // e1==e2
1063  p_SetExp(lcm,i,s, leadRing);
1064  }
1065 
1066  p_Setm(m1, tailRing);
1067  p_Setm(m2, tailRing);
1068  p_Setm(lcm, leadRing);
1069 }
1070 #endif
1071 
1072 /***************************************************************
1073  *
1074  * Misc things
1075  *
1076  ***************************************************************/
1078 {
1079  BOOLEAN ret;
1080  number mult, rest;
1081  TObject red = *PW;
1082  red.Copy();
1083  rest = n_QuotRem(pGetCoeff(Red->p), pGetCoeff(red.p),
1084  &mult, currRing->cf);
1085  red.Mult_nn(rest);
1086 
1087  assume(PR->GetLmCurrRing() != red.GetLmCurrRing());
1088  ret = ksReducePolyLC(Red, &red, NULL, &mult);
1089  red.Delete();
1090  red.Clear();
1091 
1092  return ret;
1093 }
1094 
1096 {
1097  BOOLEAN ret;
1098  number coef;
1099 
1100  assume(PR->GetLmCurrRing() != PW->GetLmCurrRing());
1101  ret = ksReducePoly(Red, PW, NULL, &coef);
1102 
1103  if (!ret)
1104  {
1105  if (! n_IsOne(coef, currRing->cf))
1106  {
1107  PR->Mult_nn(coef);
1108  // HANNES: mark for Normalize
1109  }
1110  n_Delete(&coef, currRing->cf);
1111  }
1112  return ret;
1113 }
1114 
1116 {
1117  BOOLEAN ret;
1118  number coef;
1119 
1120  assume(PR->GetLmCurrRing() != PW->GetLmCurrRing());
1121  Red->HeadNormalize();
1122  ret = ksReducePoly(Red, PW, NULL, &coef);
1123 
1124  if (!ret)
1125  {
1126  if (! n_IsOne(coef, currRing->cf))
1127  {
1128  PR->Mult_nn(coef);
1129  // HANNES: mark for Normalize
1130  }
1131  n_Delete(&coef, currRing->cf);
1132  }
1133  return ret;
1134 }
1135 
1136 /***************************************************************
1137  *
1138  * Routines for backwards-Compatibility
1139  *
1140  *
1141  ***************************************************************/
1142 KINLINE poly ksOldSpolyRed(poly p1, poly p2, poly spNoether)
1143 {
1144  LObject L(p2);
1145  TObject T(p1);
1146 
1147  ksReducePoly(&L, &T, spNoether);
1148 
1149  return L.GetLmCurrRing();
1150 }
1151 
1152 KINLINE poly ksOldSpolyRedNew(poly p1, poly p2, poly spNoether)
1153 {
1154  LObject L(p_Copy(p2, currRing));
1155  TObject T(p1);
1156 
1157  ksReducePoly(&L, &T, spNoether);
1158 
1159  return L.GetLmCurrRing();
1160 }
1161 
1162 KINLINE poly ksOldCreateSpoly(poly p1, poly p2, poly spNoether, ring r)
1163 {
1164  LObject L(r);
1165  L.p1 = p1;
1166  L.p2 = p2;
1167 
1168  ksCreateSpoly(&L, spNoether);
1169  return L.GetLmCurrRing();
1170 }
1171 
1172 void ksOldSpolyTail(poly p1, poly q, poly q2, poly spNoether, ring r)
1173 {
1174  LObject L(q, currRing, r);
1175  TObject T(p1, currRing, r);
1176 
1177  ksReducePolyTail(&L, &T, q2, spNoether);
1178 }
1179 
1180 KINLINE poly redtailBba (poly p,int pos,kStrategy strat,BOOLEAN normalize)
1181 {
1182  LObject L(p);
1183  return redtailBba(&L, pos, strat,FALSE, normalize);
1184 }
1185 
1187 {
1188  LObject L(p, currRing, strat->tailRing); // ? L(p); ??
1189  return redtailBbaBound(&L, pos, strat,bound, FALSE, normalize);
1190 }
1191 
1192 #ifdef HAVE_RINGS
1193 KINLINE poly redtailBba_Ring (poly p,int pos,kStrategy strat)
1194 {
1195  LObject L(p, currRing, strat->tailRing);
1196  return redtailBba_Ring(&L, pos, strat);
1197 }
1198 KINLINE poly redtailBba_Z (poly p,int pos,kStrategy strat)
1199 {
1200  LObject L(p, currRing, strat->tailRing);
1201  return redtailBba_Z(&L, pos, strat);
1202 }
1203 #endif
1204 
1205 KINLINE void clearS (poly p, unsigned long p_sev, int* at, int* k,
1206  kStrategy strat)
1207 {
1208  assume(p_sev == pGetShortExpVector(p));
1209  if (strat->noClearS) return;
1210  #ifdef HAVE_RINGS
1212  {
1213  if (!pLmShortDivisibleBy(p,p_sev, strat->S[*at], ~ strat->sevS[*at]))
1214  return;
1215  if(!n_DivBy(pGetCoeff(strat->S[*at]), pGetCoeff(p), currRing->cf))
1216  return;
1217  }
1218  else
1219  #endif
1220  {
1221  if (!pLmShortDivisibleBy(p,p_sev, strat->S[*at], ~ strat->sevS[*at])) return;
1222  }
1223  deleteInS((*at),strat);
1224  (*at)--;
1225  (*k)--;
1226 }
1227 
1228 // dummy function for function pointer strat->rewCrit being usable in all
1229 // possible choices for criteria
1230 KINLINE BOOLEAN arriRewDummy(poly /*sig*/, unsigned long /*not_sevSig*/, poly /*lm*/, kStrategy /*strat*/, int /*start=0*/)
1231 {
1232  return FALSE;
1233 }
1234 
1235 #endif // defined(KINLINE) || defined(KUTIL_CC)
1236 #endif // KINLINE_H
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
CanonicalForm pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
Variable x
Definition: cfModGcd.cc:4084
int p
Definition: cfModGcd.cc:4080
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
KINLINE long SetDegStuffReturnLDeg()
Definition: kInline.h:817
KINLINE void Tail_Mult_nn(number n)
Definition: kInline.h:622
int i_r1
Definition: kutil.h:193
KINLINE void Copy()
Definition: kInline.h:770
KINLINE void Delete()
Definition: kInline.h:555
KINLINE void LmDeleteAndIter()
Definition: kInline.h:658
KINLINE TObject * T_2(const skStrategy *strat)
Definition: kInline.h:889
KINLINE void PrepareRed(BOOLEAN use_bucket)
Definition: kInline.h:586
KINLINE void CanonicalizeP()
Definition: kInline.h:372
KINLINE void SetLmTail(poly lm, poly new_p, int length, int use_bucket, ring r)
Definition: kInline.h:604
KINLINE void T_1_2(const skStrategy *strat, TObject *&T_1, TObject *&T_2)
Definition: kInline.h:900
KINLINE void Normalize()
Definition: kInline.h:358
unsigned long sev
Definition: kutil.h:187
KINLINE void Init(ring tailRing=currRing)
Definition: kInline.h:562
KINLINE long MinComp()
Definition: kInline.h:848
kBucket_pt bucket
Definition: kutil.h:192
poly p2
Definition: kutil.h:188
KINLINE TObject * T_1(const skStrategy *strat)
Definition: kInline.h:879
KINLINE int GetpLength()
Definition: kInline.h:831
KINLINE int SetLength(BOOLEAN lengt_pLength=FALSE)
Definition: kInline.h:838
KINLINE void Clear()
Definition: kInline.h:549
KINLINE void Tail_Minus_mm_Mult_qq(poly m, poly qq, int lq, poly spNoether)
Definition: kInline.h:636
KINLINE void ShallowCopyDelete(ring new_tailRing, pShallowCopyDeleteProc p_shallow_copy_delete)
Definition: kInline.h:747
KINLINE poly GetTP()
Definition: kInline.h:704
KINLINE long pLDeg()
Definition: kInline.h:786
KINLINE sLObject & operator=(const sTObject &)
Definition: kInline.h:872
KINLINE void SetShortExpVector()
Definition: kInline.h:758
KINLINE void HeadNormalize()
Definition: kInline.h:378
KINLINE poly GetP(omBin lmBin=(omBin) NULL)
Definition: kInline.h:720
KINLINE sLObject(ring tailRing=currRing)
Definition: kInline.h:570
poly p1
Definition: kutil.h:188
KINLINE long Comp()
Definition: kInline.h:863
KINLINE poly LmExtractAndIter()
Definition: kInline.h:678
int i_r2
Definition: kutil.h:193
Definition: kutil.h:69
KINLINE poly GetLm(ring r)
Definition: kInline.h:273
KINLINE poly GetLmCurrRing()
Definition: kInline.h:253
KINLINE void Init(ring r=currRing)
Definition: kInline.h:110
KINLINE void Mult_nn(number n)
Definition: kInline.h:345
int length
Definition: kutil.h:79
KINLINE long SetDegStuffReturnLDeg()
Definition: kInline.h:457
KINLINE poly GetLmTailRing()
Definition: kInline.h:260
KINLINE void pCleardenom()
Definition: kInline.h:469
int ecart
Definition: kutil.h:78
KINLINE long GetpFDeg() const
Definition: kInline.h:448
KINLINE sTObject(ring tailRing=currRing)
Definition: kInline.h:116
KINLINE void ShallowCopyDelete(ring new_tailRing, omBin new_tailBin, pShallowCopyDeleteProc p_shallow_copy_delete, BOOLEAN set_max=TRUE)
Definition: kInline.h:392
KINLINE void SetLmCurrRing()
Definition: kInline.h:310
poly max_exp
Definition: kutil.h:75
char is_normalized
Definition: kutil.h:87
KINLINE long pLDeg()
Definition: kInline.h:453
KINLINE void LmDeleteAndIter()
Definition: kInline.h:324
int pLength
Definition: kutil.h:80
KINLINE long pFDeg() const
Definition: kInline.h:433
int i_r
Definition: kutil.h:81
poly p
Definition: kutil.h:73
KINLINE BOOLEAN IsNull() const
Definition: kInline.h:299
KINLINE void Set(ring r=currRing)
Definition: kInline.h:106
KINLINE void Delete()
Definition: kInline.h:210
poly t_p
Definition: kutil.h:74
ring tailRing
Definition: kutil.h:76
KINLINE int GetpLength()
Definition: kInline.h:304
KINLINE void pNorm()
Definition: kInline.h:529
KINLINE void Clear()
Definition: kInline.h:224
long FDeg
Definition: kutil.h:77
KINLINE poly Next()
Definition: kInline.h:316
int shift
Definition: kutil.h:84
KINLINE void pContent()
Definition: kInline.h:507
KINLINE long pTotalDeg() const
Definition: kInline.h:438
KINLINE long SetpFDeg()
Definition: kInline.h:443
KINLINE void Copy()
Definition: kInline.h:235
KINLINE poly kNoetherTail()
Definition: kInline.h:66
poly t_kNoether
Definition: kutil.h:334
int * S_2_R
Definition: kutil.h:345
ring tailRing
Definition: kutil.h:346
TSet T
Definition: kutil.h:327
polyset S
Definition: kutil.h:307
poly kNoether
Definition: kutil.h:331
TObject ** R
Definition: kutil.h:343
int tl
Definition: kutil.h:353
KINLINE TObject * s_2_t(int i)
Definition: kInline.h:47
KINLINE TObject * S_2_T(int i)
Definition: kInline.h:38
char noClearS
Definition: kutil.h:406
int sl
Definition: kutil.h:351
unsigned long * sevS
Definition: kutil.h:323
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition: coeffs.h:704
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:495
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:456
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:777
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:469
const CanonicalForm int s
Definition: facAbsFact.cc:51
CFArray copy(const CFList &list)
write elements of list into an array
static number Copy(number a, const coeffs)
Definition: flintcf_Q.cc:202
STATIC_VAR jList * T
Definition: janet.cc:30
KINLINE poly k_LmShallowCopyDelete_tailRing_2_currRing(poly p, ring tailRing, omBin lmBin)
Definition: kInline.h:952
KINLINE poly ksOldCreateSpoly(poly p1, poly p2, poly spNoether, ring r)
Definition: kInline.h:1162
KINLINE unsigned long * initsevT()
Definition: kInline.h:100
KINLINE poly redtailBba_Ring(poly p, int pos, kStrategy strat)
Definition: kInline.h:1193
void ksOldSpolyTail(poly p1, poly q, poly q2, poly spNoether, ring r)
Definition: kInline.h:1172
KINLINE poly k_LmShallowCopyDelete_currRing_2_tailRing(poly p, ring tailRing, omBin tailBin)
Definition: kInline.h:945
KINLINE poly k_LmInit_currRing_2_tailRing(poly p, ring tailRing, omBin tailBin)
Definition: kInline.h:927
KINLINE TSet initT()
Definition: kInline.h:84
KINLINE void k_GetStrongLeadTerms(const poly p1, const poly p2, const ring leadRing, poly &m1, poly &m2, poly &lcm, const ring tailRing)
Definition: kInline.h:1029
KINLINE int ksReducePolyTailLC_Z(LObject *PR, TObject *PW, LObject *Red)
Definition: kInline.h:1077
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition: kInline.h:1180
KINLINE poly ksOldSpolyRed(poly p1, poly p2, poly spNoether)
Definition: kInline.h:1142
KINLINE poly k_LmInit_tailRing_2_currRing(poly t_p, ring tailRing, omBin lmBin)
Definition: kInline.h:936
KINLINE poly redtailBbaBound(poly p, int pos, kStrategy strat, int bound, BOOLEAN normalize)
Definition: kInline.h:1186
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition: kInline.h:1230
KINLINE int ksReducePolyTail(LObject *PR, TObject *PW, LObject *Red)
Definition: kInline.h:1115
KINLINE poly ksOldSpolyRedNew(poly p1, poly p2, poly spNoether)
Definition: kInline.h:1152
KINLINE void clearS(poly p, unsigned long p_sev, int *at, int *k, kStrategy strat)
Definition: kInline.h:1205
KINLINE TObject ** initR()
Definition: kInline.h:95
KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
Definition: kInline.h:986
KINLINE poly redtailBba_Z(poly p, int pos, kStrategy strat)
Definition: kInline.h:1198
KINLINE int ksReducePolyTail_Z(LObject *PR, TObject *PW, LObject *Red)
Definition: kInline.h:1095
void kBucketDeleteAndDestroy(kBucket_pt *bucket_pt)
Definition: kbuckets.cc:223
void kBucketClear(kBucket_pt bucket, poly *p, int *length)
Definition: kbuckets.cc:521
void kBucketShallowCopyDelete(kBucket_pt bucket, ring new_tailRing, omBin new_tailBin, pShallowCopyDeleteProc p_shallow_copy_delete)
For changing the ring of the Bpoly to new_tailBin.
Definition: kbuckets.cc:535
void kBucket_Minus_m_Mult_p(kBucket_pt bucket, poly m, poly p, int *l, poly spNoether)
Bpoly == Bpoly - m*p; where m is a monom Does not destroy p and m assume (*l <= 0 || pLength(p) == *l...
Definition: kbuckets.cc:722
void kBucket_Mult_n(kBucket_pt bucket, number n)
Multiply Bucket by number ,i.e. Bpoly == n*Bpoly.
Definition: kbuckets.cc:598
void kBucketDestroy(kBucket_pt *bucket_pt)
Definition: kbuckets.cc:216
void kBucketInit(kBucket_pt bucket, poly lm, int length)
Definition: kbuckets.cc:493
poly kBucketExtractLm(kBucket_pt bucket)
Definition: kbuckets.cc:511
kBucket_pt kBucketCreate(const ring bucket_ring)
Creation/Destruction of buckets.
Definition: kbuckets.cc:209
void kBucketNormalize(kBucket_pt bucket)
apply n_Normalize to all coefficients
int kBucketCanonicalize(kBucket_pt bucket)
Canonicalizes Bpoly, i.e. converts polys of buckets into one poly in one bucket: Returns number of bu...
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition: kspoly.cc:452
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition: kspoly.cc:1167
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat)
Definition: kspoly.cc:185
int kFindInT(poly p, TSet T, int tlength)
returns index of p in TSet, or -1 if not found
Definition: kutil.cc:718
void deleteInS(int i, kStrategy strat)
Definition: kutil.cc:1137
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:84
denominator_list_s * denominator_list
Definition: kutil.h:63
TObject * TSet
Definition: kutil.h:59
denominator_list next
Definition: kutil.h:65
#define setmaxT
Definition: kutil.h:33
#define KINLINE
Definition: kutil.h:49
class sTObject TObject
Definition: kutil.h:57
class sLObject LObject
Definition: kutil.h:58
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
int lcm(unsigned long *l, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:709
#define assume(x)
Definition: mod2.h:387
#define p_GetComp(p, r)
Definition: monomials.h:64
#define pNext(p)
Definition: monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define pSetCoeff0(p, n)
Definition: monomials.h:59
Definition: lq.h:40
#define nDelete(n)
Definition: numbers.h:16
#define nInvers(a)
Definition: numbers.h:33
#define nIsOne(n)
Definition: numbers.h:25
#define nNormalize(n)
Definition: numbers.h:30
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define NULL
Definition: omList.c:12
omBin_t * omBin
Definition: omStructs.h:12
#define TEST_OPT_CONTENTSB
Definition: options.h:127
p_Length
Definition: p_Procs_Impl.h:123
poly p_GetMaxExpP(poly p, const ring r)
return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0,...
Definition: p_polys.cc:1133
void p_Cleardenom_n(poly ph, const ring r, number &c)
Definition: p_polys.cc:3009
void p_SimpleContent(poly ph, int smax, const ring r)
Definition: p_polys.cc:2619
void p_Norm(poly p1, const ring r)
Definition: p_polys.cc:3789
unsigned long p_GetShortExpVector(const poly p, const ring r)
Definition: p_polys.cc:4809
void p_ProjectiveUnique(poly ph, const ring r)
Definition: p_polys.cc:3198
poly p_Last(const poly p, int &l, const ring r)
Definition: p_polys.cc:4649
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1067
static long p_GetExpDiff(poly p1, poly p2, int i, ring r)
Definition: p_polys.h:635
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:118
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1295
static long p_FDeg(const poly p, const ring r)
Definition: p_polys.h:380
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static poly p_LmShallowCopyDelete(poly p, const ring r)
Definition: p_polys.h:1353
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:918
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
static void p_LmFree(poly p, ring)
Definition: p_polys.h:683
static poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
Definition: p_polys.h:1030
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1280
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition: p_polys.h:725
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1467
#define p_Test(p, r)
Definition: p_polys.h:162
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:931
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition: polys.h:146
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition: polys.h:152
#define pNormalize(p)
Definition: polys.h:317
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:486
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:722
poly(* pShallowCopyDeleteProc)(poly s_p, ring source_r, ring dest_r, omBin dest_bin)
returns a poly from dest_r which is a ShallowCopy of s_p from source_r assumes that source_r->N == de...
Definition: ring.h:44
int p_mFirstVblock(poly p, const ring ri)
Definition: shiftop.cc:475
static poly normalize(poly next_p, ideal add_generators, syStrategy syzstr, int *g_l, int *p_l, int crit_comp)
Definition: syz3.cc:1026