|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.misc.FLR
public class FLR
Fuzzy Lattice Reasoning Classifier (FLR) v5.0
The Fuzzy Lattice Reasoning Classifier uses the notion of Fuzzy Lattices for creating a Reasoning Environment.
The current version can be used for classification using numeric predictors.
For more information see:
I. N. Athanasiadis, V. G. Kaburlasos, P. A. Mitkas, V. Petridis: Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support. In: 1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003), Gdansk, Poland, 2003.
V. G. Kaburlasos, I. N. Athanasiadis, P. A. Mitkas, V. Petridis (2003). Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration.
@inproceedings{Athanasiadis2003, address = {Gdansk, Poland}, author = {I. N. Athanasiadis and V. G. Kaburlasos and P. A. Mitkas and V. Petridis}, booktitle = {1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003)}, note = {Abstract in ICSC-NAISO Academic Press, Canada (ISBN:3906454339), pg.51}, publisher = {ICSC-NAISO Academic Press}, title = {Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support}, year = {2003} } @unpublished{Kaburlasos2003, author = {V. G. Kaburlasos and I. N. Athanasiadis and P. A. Mitkas and V. Petridis}, title = {Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration}, year = {2003} }Valid options are:
-R Set vigilance parameter rhoa. (a float in range [0,1])
-B Set boundaries File Note: The boundaries file is a simple text file containing a row with a Fuzzy Lattice defining the metric space. For example, the boundaries file could contain the following the metric space for the iris dataset: [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 This lattice just contains the min and max value in each dimension. In other kind of problems this may not be just a min-max operation, but it could contain limits defined by the problem itself. Thus, this option should be set by the user. If ommited, the metric space used contains the mins and maxs of the training split.
-Y Show RulesFor further information contact I.N.Athanasiadis (ionathan@iti.gr)
Field Summary | |
---|---|
static float |
EPSILON
|
Constructor Summary | |
---|---|
FLR()
|
Method Summary | |
---|---|
java.lang.String |
boundsFileTipText()
Returns the tip text for this property |
void |
buildClassifier(Instances data)
Builds the FLR Classifier |
void |
checkBounds()
Checks the metric space |
double |
classifyInstance(Instance instance)
Classifies a given instance using the FLR Classifier model |
java.util.Enumeration |
enumerateMeasures()
Returns an enumeration of the additional measure names |
java.lang.String |
getBoundsFile()
Get boundaries File |
Capabilities |
getCapabilities()
Returns default capabilities of the classifier. |
double |
getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier. |
java.lang.String |
getRevision()
Returns the revision string. |
double |
getRhoa()
Get rhoa |
boolean |
getShowRules()
Get ShowRules parameter |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
java.lang.String |
globalInfo()
Returns a description of the classifier suitable for displaying in the explorer/experimenter gui |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] args)
Main method for testing this class. |
double |
measureNumRules()
Additional measure Number of Rules |
java.lang.String |
rhoaTipText()
Returns the tip text for this property |
void |
setBounds(Instances data)
Sets the metric space from the training set using the min-max stats, in case -B option is not used. |
void |
setBoundsFile(java.lang.String newBoundsFile)
Set Boundaries File |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setRhoa(double newRhoa)
Set rhoa |
void |
setShowRules(boolean flag)
Set ShowRules flag |
java.lang.String |
showRules()
Returns the induced set of Fuzzy Lattice Rules |
java.lang.String |
showRulesTipText()
Returns the tip text for this property |
java.lang.String |
toString()
Returns a description of the classifier. |
java.lang.String |
toSummaryString()
Returns a superconcise version of the model |
Methods inherited from class weka.classifiers.Classifier |
---|
debugTipText, distributionForInstance, forName, getDebug, makeCopies, makeCopy, setDebug |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
public static final float EPSILON
Constructor Detail |
---|
public FLR()
Method Detail |
---|
public Capabilities getCapabilities()
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class Classifier
Capabilities
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class Classifier
data
- the training dataset (Instances)
java.lang.Exception
- if the training dataset is not supported or is erroneouspublic double classifyInstance(Instance instance)
classifyInstance
in class Classifier
instance
- the instance to be classified
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String toSummaryString()
toSummaryString
in interface Summarizable
public java.lang.String showRules()
public java.util.Enumeration listOptions()
-R Set vigilance parameter rhoa. (a float in range [0,1])
-B Set boundaries File Note: The boundaries file is a simple text file containing a row with a Fuzzy Lattice defining the metric space. For example, the boundaries file could contain the following the metric space for the iris dataset: [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 This lattice just contains the min and max value in each dimension. In other kind of problems this may not be just a min-max operation, but it could contain limits defined by the problem itself. Thus, this option should be set by the user. If ommited, the metric space used contains the mins and maxs of the training split.
-Y Show Rules
listOptions
in interface OptionHandler
listOptions
in class Classifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-R Set vigilance parameter rhoa. (a float in range [0,1])
-B Set boundaries File Note: The boundaries file is a simple text file containing a row with a Fuzzy Lattice defining the metric space. For example, the boundaries file could contain the following the metric space for the iris dataset: [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 This lattice just contains the min and max value in each dimension. In other kind of problems this may not be just a min-max operation, but it could contain limits defined by the problem itself. Thus, this option should be set by the user. If ommited, the metric space used contains the mins and maxs of the training split.
-Y Show Rules
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supported (public java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public double getRhoa()
public java.lang.String getBoundsFile()
public boolean getShowRules()
public void setRhoa(double newRhoa) throws java.lang.Exception
newRhoa
- sets the rhoa value
java.lang.Exception
- if rhoa is not in range [0,1]public void setBoundsFile(java.lang.String newBoundsFile)
newBoundsFile
- a new file containing the boundariespublic void setShowRules(boolean flag)
flag
- the new value of this parameterpublic void setBounds(Instances data)
data
- is the training setpublic void checkBounds()
public java.lang.String rhoaTipText()
public java.lang.String boundsFileTipText()
public java.lang.String showRulesTipText()
public double getMeasure(java.lang.String additionalMeasureName)
getMeasure
in interface AdditionalMeasureProducer
additionalMeasureName
- the name of the measure to query for its value
java.lang.IllegalArgumentException
- if the named measure is not supportedpublic java.util.Enumeration enumerateMeasures()
enumerateMeasures
in interface AdditionalMeasureProducer
public double measureNumRules()
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class Classifier
public static void main(java.lang.String[] args)
args
- should contain command line arguments for evaluation
(see Evaluation).
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |