
Contents

1 Introduction 1

1.1 Guide to the Code 1
1.2 Guide to the manual 1
1.3 Reader’s Guide to the Manual 1

2 Scene Description Language 3

2.1 RubySceneGraph language 3
2.2 File structure 4
2.3 Node Expression 4
2.4 Scene Graph templates 5
2.5 Language Reference 6

3 Development Conventions 7

3.1 Naming conventions 7
3.2 CVS Tagging 7

4 Zeitgeist application framework 9

4.1 Writing a class object for a C++ class 9
4.2 Registering a Class Object 11

4.2.1 Direct Registration 11
4.2.2 Indirect Registration 12

4.3 Exposing C++ functions to Ruby Scripts 12

i

ii

1Introduction

1.1 Guide to the Code

• Salt

• Zeitgeist

• Oxygen

• Kerosin

1.2 Guide to the manual

1.3 Reader’s Guide to the Manual

1

2

2Scene Description Language

SimSpark provides access to the managed scene graph in several ways. Besides the internal
C++ interface and external access via Ruby script language, an extensible mechanism for scene
description languages is implemented. This allows for both a procedural and a description-
based scene setup.

A scene is imported using one of any number of registered scene importer plugins, each
supporting a different scene description language.

2.1 RubySceneGraph language

Currently one S-expression-based importer is implemented. This language is called RubyScene-
Graph (RSG for short) and used to model the current robot models. It maps the scene graph
structure to the nesting of Lisp-like s-expressions.

An s-expression is a list of elements. Each element is either an atom or is itself another
list of atoms. An atom is either a predefined keyword or a non empty string literal that
has no further syntactic structure. The syntax of s-expressions, written using EBNF is given in
Listing 2.1.

cha rac t e r −> ”A” | . . . | ”Z” | ”1” | . . . | ”9” ,
atom −> cha rac t e r+
l i s t −> ” (” s e x p r e s s i o n ∗ ”) ”
s e x p r e s s i o n −> atom | l i s t

Listing 2.1: EBNF notation of s-expressions

On the semantic side the RubySceneGraph interpreter recognizes a set of special atoms.
The first atom in each subexpression determines its type. The set of keywords comprises some
atoms that allow the interpreter to distinguish different expression types.

For most expression types exists a short hand notation that can be used to save some typing.
The short hand notation is further used in the monitor protocol to keep it more compact.

• The RubySceneGraph expression is the header expression of every scene graph file.

• The node (short nd) expression declares a new scene graph node.

• The importScene expression is replaced with the content of another scene graph file.

• The template (short templ) expression declares a set of parameters for a following scene
fragment that can later be reused like a macro.

3

• The define (short def) expression defines a variable with the scope of the current scene
file and all files sourced with the importScene expression.

• The eval expression uses the ruby interpreter to evaluate an expresion and is replaced by
the computed value.

• Every other expression type is interpreted as a method call that is carried out by the
ruby Script interface

Apart from the different expression types listed above a replacement mechanism is imple-
mented. Every atom literal starting with a dollar sign is interpreted as a template or variable
parameter and replaced with its actual value.

We shall describe the semantic of the different expression types below together with some
small usage examples and a partial reference of available node types and methods.

2.2 File structure

The top level structure of a ruby scene file consists of two s-expressions. The first expression
must be the header expression. It allows the parser to confirm the file type and to get informa-
tion about the version of the used language.

The syntax of the header expression is (RubySceneGraph <major Version> <minor Version>).
Currently the only valid header states 0 for the major and 1 for the minor version.

The header is followed by a single s-expression that contains the scene graph body. Any
further expression is discarded. The body expression consists of an optional single template
expression and a set of node expressions. The resulting structure is outlined in listing 2.2. Note
that lines starting with a semicolon are comment lines.

; the header expression
(RubySceneGraph 0 1)
(

; the body of the f i l e s t a r t s here

; declare th i s f i l e as a template
(template \$lenX \$lenY \$lenZ \$dens i ty \$mater ia l)

; compute the volume of the box
(de f ine \$volume eval (\ $lenX ∗ \$lenY ∗ \$lenZ)

; declare the top leve l scene graph node
(node Box

; chi ldren of the top leve l node go here
(node DragContro l l e r
)

)
)

Listing 2.2: File Structure

2.3 Node Expression

The scene graph consists of a tree of object instances, called nodes. Each node in the scene
graph is declared with the (node <ClassName>) expression. The ClassName argument gives
the name of a class registered to the Zeitgeist class factory system.

4

The semantic of a node expression is to instantiate a new scene graph object of the given
class type. The importer therefore relies on the Zeitgeist class factory system to create the
requested object. It is then installed as a child of the nearest enclosing node expression. If there
is no enclosing node expression then the node is a top level node of the expressed scene graph.

The set of top level nodes are installed as children of the node below which the current
graph is imported. This is either the global root node of the system, or an insertion point
defined with the importScene expression within another scene graph file. The nesting of node
expressions therefore defines directly the structure of the resulting scene graph with a very
small syntactic overhead.

The set of top level nodes are installed as children of the node below which the current
graph is imported. This is either the global root node of the system, or an insertion point
defined with the importScene expression within another scene graph file. The nesting of node
expressions therefore defines directly the structure of the resulting scene graph with a very
small syntactic overhead.

2.4 Scene Graph templates

The language further allows the reuse of scene graph parts in a macro like fashion. This en-
ables the construction of a repository of predefined partial scenes, or complete agent descrip-
tions. The macro concept is available through the (importScene <filename> <parameter>*)
expression. This expression recursively calls the importer facilities of the system. It takes the
nearest enclosing node expression as the relative root node to install the scene graph described
within the given file.

Note that the given file must not necessarily be another RubySceneGraph file but any file
type registered to the importer framework. This allows the nesting of scene graph parts ex-
pressed in different graph description languages. An example application of this feature is that
parts of the resulting scene could be created by application programs better suited to create 3D
models. By now, we do not exploit this feature yet.

The list of parameters given to the importScene expression is passed on to the responsible
importer plugin. If another ruby scene graph file is imported that declares a template, they are
substituted with its formal parameters.

A template declaration within the imported file has to meet the following syntax: (template
<parameterName>*). A parameter name is a string literal that is prefixed with a dollar sign, see
listing 2.2 for an example declaration. All parameter names that follow within the body of the
file are replaced with their actual content.

The usage example in listing 2.3 below assumes a box.rsg file. It uses that to construct
boxes with varying sizes and colors.

(RubySceneGraph 0 1)
(

(node Transform
(importScene box . r sg 1 3 0.8 10 matRed)

)
(node Transform

(importScene box . r sg 2 4 0.4 8 matBlue)
)

)

Listing 2.3: importScene example

5

2.5 Language Reference

6

3Development Conventions

We agreed on a set of conventions that you should apply to when you contribute to the devel-
opment.

3.1 Naming conventions

This section lists some naming conventions used throughout the source code.

• Class Object Files

The implementation of zeitgeist class object files in contained in a separate C++ file with
a c prefix, see section 4.1. A class called simple has it’s class object implementation in
the file simple c.cpp

• Bundle Registration

The C++ implementation file that registers classes contained in a zeitgeist bundle to the
calling core is called export.cpp, see section 4.2

• Function Names

Ruby functions start with a lower letter, C++ functions with a capital letter

• Class Names

Common well known service class instances are called servers and are installed below
the /sys/server/ path in the zeitgeist hierarchy. The script service implementation for
example is called ScriptServer and is installed ad /sys/server/script.

3.2 CVS Tagging

Developing and testing an new feature of Simspark is usually done on a separate CVS branch.
We implemented the following convention to tag the branch and trunk before and after merging
and branching takes place:

Before branching off the trunk is tagged BRANCHNAME base in order to mark the last CVS
state before the branch is started.

Each time before a branch is merged back to the trunk the trunk ist tagged BRANCHNAME premergeN.
The value N increases with each separate merge. After the branch is merged the trunk is tagged
BRANCHNAME postmergeN and the merged branched is tagged BRANCHNAME mergedN

7

8

4Zeitgeist application framework

The Zeitgeist library provides two major features. It implements a mechanism to work with
class objects in C++. A class object is just a factory of class instances. In addition to this
mechanism, it also implements an object hierarchy. This hierarchy is essentially a virtual file
system, where the ’directories’ and ’files’ are instances of C++ classes. These two concepts
are quite intertwined with each other, as class objects can also live inside the object hierarchy.
Objects within the hierarchy are identified with a unique name. On top of these two features,
the Zeitgeist library also provides three very important ’built-in’ services. Each basic service is
usually represented by a ’server’ class in our terminology. An instance of such a class provides
the service to other parts of the system. The three services built into the Zeitgeist library are
the LogServer, the FileServer, and the ScriptServer.

4.1 Writing a class object for a C++ class

This topic is fundamental in the understanding of how the class object and the object hierarchy
framework interact with each other. Let’s say we have a simple class:

class Simple
{
public:
Simple();
virtual ~Simple();

void DoSomething();
void PrintString(const std::string& s);
void PrintInt(int i);
void PrintFloat(float f);
void PrintBool(bool b);

};

Now, in order to write a class object for this class we must do two things: First, the class
must derive from the zeitgeist::Object class or one of its descendants, especially Leaf and
Node if instances of this class are to live in the object hierarchy. In addition to this, a class object
must be declared and defined, which serves as a factory for instances of this class.

The first step is performed easily:

9

#include <zeitgeist/leaf.h>

class Simple : public zeitgeist::Leaf
{
public:
Simple();
virtual ~Simple();

void DoSomething();
void PrintString(const std::string& s);
void PrintInt(int i);
void PrintFloat(float f);
void PrintBool(bool b);

};

Now, we just have to write a class object for this class. As this is a pretty repetitive pro-
cedure, several helper-macros exist to make this as painless as possible. First, we declare the
class object. This is done in the header file with the DECLARE CLASS()-macro:

#include <zeitgeist/leaf.h>

class Simple : public zeitgeist::Leaf
{
public:
Simple();
virtual ~Simple();

void DoSomething();
void PrintString(const std::string& s);
void PrintInt(int i);
void PrintFloat(float f);
void PrintBool(bool b);

};

DECLARE_CLASS(Simple);

With this macro, we declare the class object. If Simple would have been an abstract
base class (containing one or more pure virtual functions) we would have needed to use the
DECLARE ABSTRACTCLASS()-macro instead.

Both of these macros create a new class with the mangled name Class XXXX, where
XXXX is the name of the class. In our case this would be Class Simple. This class is de-
rived from zeitgeist::Class. In the case of DECLARE CLASS() the macro also provides a
CreateInstance() function, which creates an instance of the Simple class.

The DECLARE ABSTRACTCLASS() macro does not do this, as it is impossible to create an
instance of an abstract class. It inherits the base behavior from zeitgeist::Class, which just
returns NULL.

In addition to this, both macros declare a DefineClass() member function, which needs
to be implemented to define the class object fully. This is done in an additional CPP file. If
the class above was implemented in the files simple.h and simple.cpp, the accompanying
class object should be placed in the file simple c.cpp. This naming convention has been found
useful during development and should be adopted. A minimal simple c.cpp should look like
this:

#include "simple.h"

10

using namespace zeitgeist;

void CLASS(Simple)::DefineClass()
{
DEFINE_BASECLASS(zeitgeist/Leaf);

}

The CLASS()-macro is used to identify the name of the class object. In the above example, it
just resolves to Class Simple. The DEFINE BASECLASS() macro is used to identify the base class
of the class described by this class object. This can appear multiple times to allow for multiple
inheritance. We now have a working class object. In order to use it it must be registered to the
zeitgeist framework. This process is described in section 4.2.

4.2 Registering a Class Object

In section 4.1 we created a class object for the C++ class Simple. Before this class object can
be used by the zeitgeist framework it must be registered with a zeitgeist::Core object.

The Core is the object hierarchy, which is basically a virtual file system where instances
of classes represent the directories and ’files’. Therefore, each class instance can be identified
by a path. The Core has a function called RegisterClassObject() which inserts the class
object into the object hierarchy. Class objects are located under the ’/classes/’ branch of the
hierarchy. We have two major scenarios of how a class object can be registered: Directly or
indirectly!

4.2.1 Direct Registration

This scenario is used in the case of static libraries and executables, which want to expose custom
classes to the object hierarchy. An example of a library, which does this is Kerosin. This way of
registering is pretty straight forward and involves an initialization function which has a means
to access the zeitgeist::Core instance where the class objects are to be registered. Then it
(directly) calls the RegisterClassObject()-method to successively add class objects. Here’s a
short snippet from the Kerosin library:

#include "kerosin.h"
#include <zeitgeist/scriptserver/scriptserver.h>

using namespace kerosin;
using namespace zeitgeist;

Kerosin::Kerosin(zeitgeist::Zeitgeist &zg)
{
zg.GetCore()->RegisterClassObject(new CLASS(SoundServer), "kerosin/");

zg.GetCore()->RegisterClassObject(new CLASS(InputServer), "kerosin/");

zg.GetCore()->RegisterClassObject(new CLASS(ImageServer), "kerosin/");

zg.GetCore()->RegisterClassObject(new CLASS(FontServer), "kerosin/");

zg.GetCore()->RegisterClassObject(new CLASS(OpenGLServer), "kerosin/");

11

The Kerosin library is initialized by creating an instance of the Kerosin class. The con-
structor needs a reference to the Zeitgeist object (which represents the Zeitgeist library), so it
can get access to the Core. The class objects are all added to the object hierarchy under the
’/classes/’ branch.

The second parameter of RegisterClassObject() allows to specify an additional sub path.
So, the class object for the SoundServer (for example) will be located at ’/classes/kerosin/SoundServer’.
In in a way, this allows to create a form of namespaces among the class objects. As we can see,
it is possible to add a class object directly at any time during the execution of the program.

4.2.2 Indirect Registration

The second scenario involves packaging a bunch of class objects into a shared library. On Unix
platform these files are called .so files. In the Windows world thees files are .DLLs. The shared
library is used as a class library, containing a collection of classes to be added to the object
hierarchy. This kind of library is referred to as a Bundle.

The Bundle contains a well defined entry point function, which registers its contents with
the calling Core. This is simplified through the use of several macros. First, we have to create a
shared library project, containing a bunch of classes and their corresponding class objects. This
process is described in section 4.1. Then, we create an additional .CPP file. By convention this
file is called export.cpp. Let’s say we have two classes in our bundle, Simple and Complex.
The corresponding export.cpp would look like this:

#include "simple.h"
#include "complex.h"
#include <zeitgeist/zeitgeist.h>

ZEITGEIST_EXPORT_BEGIN()
ZEITGEIST_EXPORT(Simple);
ZEITGEIST_EXPORT(Complex);

ZEITGEIST_EXPORT_END()

Thanks to the macros, this is again a quite compact notation. We just include the header
files of all classes we want to expose. These should also incorporate the correct class ob-
ject declarations. Then we include the zeitgeist framework. The following macros imple-
ment the entry point function. ZEITGEIST EXPORT BEGIN() implements the beginning of the
function. Then we use ZEITGEIST EXPORT() for every class we want to export, and finally
ZEITGEIST EXPORT END() to ’terminate’ the function. The compiled library is then a Zeitgeist-
capable Bundle. The ZEITGEIST EXPORT EX() macro can be used to specify a subpath as above
with RegisterClassObject().

To indirectly register the classes contained in a Bundle, you just import the bundle into the
Core. This is done with the ImportBundle()-member function. This function opens the shared
library. Gets the entry point function and calls it with an STL list. The class objects are added
to this list within the entry point function. After returning, all class objects contained in this list
are added to the object hierarchy.

4.3 Exposing C++ functions to Ruby Scripts

As we want to expose much functionality to the script side, we also want to be able to call C++
functions from Ruby. In order to do this, we intercept unknown function calls on the Ruby side.

12

The parameters are converted on the C++ side. There we know the name of the function to
call, the object to call them on, and the parameters.

But, how do we actually call the correct C++ function. The answer lies in the class object.
The class object will contain the necessary meta-data to reroute the function call to the correct
C++ function. The class object defines the interface of the class to the script side. This is done
in the same file as the class definition was performed, i.e. the additional CPP file as described
in section. 4.1. Let’s go back to the Simple class from earlier:

#include <zeitgeist/leaf.h>

class Simple : public zeitgeist::Leaf
{
public:
Simple();
virtual ~Simple();

void DoSomething();
void PrintString(const std::string& s);
void PrintInt(int i);
void PrintFloat(float f);
void PrintBool(bool b);

};

DECLARE_CLASS(Simple);

In order to to expose the DoSomething() method the simple c.cpp would look like this:

#include "simple.h"

using namespace zeitgeist;

FUNCTION(doSomething)
{
if (in.size() == 0)
{

Simple *simple = static_cast<Simple*>(obj);
simple->DoSomething();

}
}

void CLASS(Simple)::DefineClass()
{
DEFINE_BASECLASS(zeitgeist/Leaf);
DEFINE_FUNCTION(doSomething);

}

Every function is declared using the FUNCTION()-macro. As a parameter it takes the name
of the function. By convention Ruby-side functions start with a lower-case letter and C++-side
functions with a capital letter.

The function macro just declares a function, which takes two parameters: obj and in.
obj is the object we are calling the function on, i.e. basically, the this or self pointer. in a
reference to a ParameterList instance. Basically the Parameterlist class manages a list of
boost::any values and provides helper to iterate the list and cast values to the desired type.

In DefineClass() we also have to define the function using the DEFINE FUNCTION() macro.
After this has been done and after the class object is registered with the Core, we can execute
the following script-code:

13

mySimpleObj = new (’Simple’, ’test’)
mySimpleObj.doSomething

This ruby code would then call the C++ member function DoSomething(). Now, how
about passing some parameters. Let’s marshall the PrintInt() function:

#include "simple.h"

using namespace zeitgeist;
using namespace boost;

FUNCTION(printInt)
{
if (in.GetSize() != 1)
{

return false;
}

int value;
in.GetValue(in[0]);

obj->PrintInt(value);
return true;

}

The above function obviously also would need to be defined in DefineClass(). Now we
see that the first given value is automatically cast to int using the GetValue() function on
the ParameterList. The obj contains the reference to our Simple class instance. Using this
reference we call the C++ PrintInt() function.

The rest of the code is concerned with error checking as GetSize() is used to check the
number of the given parameters. In the current implementation every C++ function that is
exposed to ruby needs to return a value, so we just return a boolean value here. The return
type is not fixed but marshalled using a boost::any container. It is therefore possible to return
different types.

14

	Introduction
	Guide to the Code
	Guide to the manual
	Reader's Guide to the Manual

	Scene Description Language
	RubySceneGraph language
	File structure
	Node Expression
	Scene Graph templates
	Language Reference

	Development Conventions
	Naming conventions
	CVS Tagging

	Zeitgeist application framework
	Writing a class object for a C++ class
	Registering a Class Object
	Direct Registration
	Indirect Registration

	Exposing C++ functions to Ruby Scripts

